삼각함수와 쌍곡함수의 맥클로린 급수

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 12월 28일 (월) 03:29 판
둘러보기로 가기 검색하러 가기

개요


삼각함수의 멱급수 표현

  • 사인함수와 코사인함수의 급수표현은 미적분학 강의를 통해서도 잘 배우지만, 탄젠트는 거의 언급되지 않음.
  • 그 이유는, 표현에 베르누이 수가 필요하기 때문.\[\tan x = x + \frac{x^3}{3} + \frac{2 x^5}{15} + \frac{17 x^7}{315} + \cdots =\sum_{n=1}^\infty \frac{(-1)^{n-1} 2^{2n} (2^{2n}-1) B_{2n} x^{2n-1}}{(2n)!}\]\[\cot x = \frac {1} {x} - \frac {x}{3} - \frac {x^3} {45} - \frac {2 x^5} {945} - \cdots = \sum_{n=0}^\infty \frac{(-1)^n 2^{2n} B_{2n} x^{2n-1}}{(2n)!}\]\[\sec x = 1 + \frac {x^2} {2} + \frac {5 x^4} {24} + \frac {61 x^6} {720} + \cdots=\sum_{n=0}^\infty \frac{(-1)^n E_{2n} x^{2n}}{(2n)!}\]


쌍곡함수의 멱급수 표현

  • 쌍곡함수 에서 가져옴\[\tanh x = x - \frac {x^3} {3} + \frac {2x^5} {15} - \frac {17x^7} {315} + \cdots = \sum_{n=1}^\infty \frac{2^{2n}(2^{2n}-1)B_{2n} x^{2n-1}}{(2n)!}, \left |x \right | < \frac {\pi} {2}\]\[\coth x = \frac {1} {x} + \frac {x} {3} - \frac {x^3} {45} + \frac {2x^5} {945} + \cdots = \frac {1} {x} + \sum_{n=1}^\infty \frac{2^{2n} B_{2n} x^{2n-1}} {(2n)!}, 0 < \left |x \right | < \pi\]\[\operatorname {sech}\, x = 1 - \frac {x^2} {2} + \frac {5x^4} {24} - \frac {61x^6} {720} + \cdots = \sum_{n=0}^\infty \frac{E_{2 n} x^{2n}}{(2n)!}\]



관련된 항목들



사전 형태의 자료