"삼각함수의 적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
23번째 줄: 23번째 줄:
 
<h5>사인과 코사인의 거듭제곱</h5>
 
<h5>사인과 코사인의 거듭제곱</h5>
  
<math>\int\sin^n {x}\;dx = -\frac{\sin^{n-1} x\cos x}{n} + \frac{n-1}{n}\int\sin^{n-2} x\;dx \qquad\mbox{(for }n>2\mbox{)}\,\!</math>
+
*  사인과 코사인의 거듭제곱<br><math>\int\sin^n {x}\;dx = -\frac{\sin^{n-1} x\cos x}{n} + \frac{n-1}{n}\int\sin^{n-2} x\;dx \qquad\mbox{(for }n>2\mbox{)}\,\!</math><br><math>\int\cos^n x\;dx = \frac{\cos^{n-1} x\sin x}{n} + \frac{n-1}{n}\int\cos^{n-2} x\;dx \qquad\mbox{(for }n>2\mbox{)}\,\!</math><br>
 
 
 
 
  
 
(증명)
 
(증명)
37번째 줄: 35번째 줄:
 
<math>\int \sin^{n-2}{x}\cos^2 x\,dx=\int (\sin^{n-2}{x}\cos x)\cos x \,dx=\frac{1}{n-1}\sin^{n-1}x\cos x+\int \frac{1}{n-1}\sin^{n-1}x \sin x dx=\frac{1}{n-1}\sin^{n-1}x\cos x+\frac{1}{n-1}\int \sin^{n}x \,dx</math>
 
<math>\int \sin^{n-2}{x}\cos^2 x\,dx=\int (\sin^{n-2}{x}\cos x)\cos x \,dx=\frac{1}{n-1}\sin^{n-1}x\cos x+\int \frac{1}{n-1}\sin^{n-1}x \sin x dx=\frac{1}{n-1}\sin^{n-1}x\cos x+\frac{1}{n-1}\int \sin^{n}x \,dx</math>
  
치환적분 <math>u=\cos x</math>, <math>dv=\sin^{n-2}x\cos x \dx</math>
+
여기서 치환적분 <math>u=\cos x</math>, <math>dv=\sin^{n-2}x\cos x \dx</math>
  
 
 
 
 
47번째 줄: 45번째 줄:
 
 
 
 
  
<math>\int\sin^n {x}\;dx = -\frac{\sin^{n-1} x\cos x}{n} + \frac{n-1}{n}\int\sin^{n-2} x\;dx</math>
+
<math>\int\sin^n {x}\;dx = -\frac{\sin^{n-1} x\cos x}{n} + \frac{n-1}{n}\int\sin^{n-2} x\;dx</math>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<math>\int\cos^n x\;dx = \frac{\cos^{n-1} x\sin x}{n} + \frac{n-1}{n}\int\cos^{n-2} x\;dx \qquad\mbox{(for }n>2\mbox{)}\,\!</math>
 
 
 
 
 
  
 
*  이 결과들은 [[월리스 곱 (Wallis product formula)]] 에 응용할 수 있다<br>
 
*  이 결과들은 [[월리스 곱 (Wallis product formula)]] 에 응용할 수 있다<br>
 +
*  정적분의 결과는 [[오일러 베타적분(베타함수)]] 로 표현할 수 있다<br>
  
 
 
 
 
113번째 줄: 100번째 줄:
 
<h5>관련된 항목들</h5>
 
<h5>관련된 항목들</h5>
  
 
+
*  
  
 
 
 
 

2012년 8월 25일 (토) 15:36 판

이 항목의 스프링노트 원문주소

 

 

 

 

 

개요

 

 

 

 

사인과 코사인의 거듭제곱
  • 사인과 코사인의 거듭제곱
    \(\int\sin^n {x}\;dx = -\frac{\sin^{n-1} x\cos x}{n} + \frac{n-1}{n}\int\sin^{n-2} x\;dx \qquad\mbox{(for }n>2\mbox{)}\,\!\)
    \(\int\cos^n x\;dx = \frac{\cos^{n-1} x\sin x}{n} + \frac{n-1}{n}\int\cos^{n-2} x\;dx \qquad\mbox{(for }n>2\mbox{)}\,\!\)

(증명)

 

\(\int\sin^n {x}\,dx = \int\sin^{n-2}{x} (1-\cos^2 x)\,dx=\int\sin^{n-2}{x}-\sin^{n-2}{x}\cos^2 x\,dx=\int\sin^{n-2}{x}-\int \sin^{n-2}{x}\cos^2 x\,dx\)

 

\(\int \sin^{n-2}{x}\cos^2 x\,dx=\int (\sin^{n-2}{x}\cos x)\cos x \,dx=\frac{1}{n-1}\sin^{n-1}x\cos x+\int \frac{1}{n-1}\sin^{n-1}x \sin x dx=\frac{1}{n-1}\sin^{n-1}x\cos x+\frac{1}{n-1}\int \sin^{n}x \,dx\)

여기서 치환적분 \(u=\cos x\), \(dv=\sin^{n-2}x\cos x \dx\)

 

\(\int\sin^n {x}\,dx=\int\sin^{n-2}{x}-\int \sin^{n-2}{x}\cos^2 x\,dx=\int\sin^{n-2}{x}-\frac{1}{n-1}\sin^{n-1}x\cos x-\frac{1}{n-1}\int \sin^{n}x \,dx\)

\(\frac{n}{n-1}\int \sin^{n}x \,dx=\int\sin^{n-2}{x}-\frac{1}{n-1}\sin^{n-1}x\cos x\)

 

\(\int\sin^n {x}\;dx = -\frac{\sin^{n-1} x\cos x}{n} + \frac{n-1}{n}\int\sin^{n-2} x\;dx\) ■

 

 

 

탄젠트와 시컨트의 거듭제곱

 

\(\begin{align} \int \sec^3 x \, dx &{}= \int u\,dv \\ &{}= uv - \int v\,du \\ &{} = \sec x \tan x - \int \sec x \tan^2 x\,dx \\ &{}= \sec x \tan x - \int \sec x\, (\sec^2 x - 1)\,dx \\ &{}= \sec x \tan x - \left(\int \sec^3 x \, dx - \int \sec x\,dx.\right) \\ &{}= \sec x \tan x - \int \sec^3 x \, dx + \int \sec x\,dx. \end{align}\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들
  •  

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

링크