"삼각함수의 적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 22개는 보이지 않습니다)
1번째 줄: 1번째 줄:
[[월리스 곱 (Wallis product formula)]]
+
==개요==
  
 
+
  
<math>\int\sin^n {x}\;dx = -\frac{\sin^{n-1} x\cos x}{n} + \frac{n-1}{n}\int\sin^{n-2} x\;dx \qquad\mbox{(for }n>2\mbox{)}\,\!</math>
+
  
 
+
  
(증명)
+
  
 
+
==사인과 코사인의 거듭제곱==
 +
 
 +
*  사인과 코사인의 거듭제곱:<math>\int\sin^n {x}\;dx = -\frac{\sin^{n-1} x\cos x}{n} + \frac{n-1}{n}\int\sin^{n-2} x\;dx \qquad\mbox{(for }n>2\mbox{)}\,\!</math>:<math>\int\cos^n x\;dx = \frac{\cos^{n-1} x\sin x}{n} + \frac{n-1}{n}\int\cos^{n-2} x\;dx \qquad\mbox{(for }n>2\mbox{)}\,\!</math>
 +
 
 +
;(증명)
  
 
<math>\int\sin^n {x}\,dx = \int\sin^{n-2}{x} (1-\cos^2 x)\,dx=\int\sin^{n-2}{x}-\sin^{n-2}{x}\cos^2 x\,dx=\int\sin^{n-2}{x}-\int \sin^{n-2}{x}\cos^2 x\,dx</math>
 
<math>\int\sin^n {x}\,dx = \int\sin^{n-2}{x} (1-\cos^2 x)\,dx=\int\sin^{n-2}{x}-\sin^{n-2}{x}\cos^2 x\,dx=\int\sin^{n-2}{x}-\int \sin^{n-2}{x}\cos^2 x\,dx</math>
  
 
+
  
 
<math>\int \sin^{n-2}{x}\cos^2 x\,dx=\int (\sin^{n-2}{x}\cos x)\cos x \,dx=\frac{1}{n-1}\sin^{n-1}x\cos x+\int \frac{1}{n-1}\sin^{n-1}x \sin x dx=\frac{1}{n-1}\sin^{n-1}x\cos x+\frac{1}{n-1}\int \sin^{n}x \,dx</math>
 
<math>\int \sin^{n-2}{x}\cos^2 x\,dx=\int (\sin^{n-2}{x}\cos x)\cos x \,dx=\frac{1}{n-1}\sin^{n-1}x\cos x+\int \frac{1}{n-1}\sin^{n-1}x \sin x dx=\frac{1}{n-1}\sin^{n-1}x\cos x+\frac{1}{n-1}\int \sin^{n}x \,dx</math>
  
치환적분 <math>u=\cos x</math>, <math>dv=\sin^{n-2}x\cos x \dx</math>
+
여기서 치환적분 <math>u=\cos x</math>, <math>dv=\sin^{n-2}x\cos x \,dx</math>
  
 
+
  
 
<math>\int\sin^n {x}\,dx=\int\sin^{n-2}{x}-\int \sin^{n-2}{x}\cos^2 x\,dx=\int\sin^{n-2}{x}-\frac{1}{n-1}\sin^{n-1}x\cos x-\frac{1}{n-1}\int \sin^{n}x \,dx</math>
 
<math>\int\sin^n {x}\,dx=\int\sin^{n-2}{x}-\int \sin^{n-2}{x}\cos^2 x\,dx=\int\sin^{n-2}{x}-\frac{1}{n-1}\sin^{n-1}x\cos x-\frac{1}{n-1}\int \sin^{n}x \,dx</math>
25번째 줄: 29번째 줄:
 
<math>\frac{n}{n-1}\int \sin^{n}x \,dx=\int\sin^{n-2}{x}-\frac{1}{n-1}\sin^{n-1}x\cos x</math>
 
<math>\frac{n}{n-1}\int \sin^{n}x \,dx=\int\sin^{n-2}{x}-\frac{1}{n-1}\sin^{n-1}x\cos x</math>
  
 
+
 +
 
 +
<math>\int\sin^n {x}\;dx = -\frac{\sin^{n-1} x\cos x}{n} + \frac{n-1}{n}\int\sin^{n-2} x\;dx</math> ■
 +
 
 +
*  이 결과들은 [[월리스 곱 (Wallis product formula)]] 에 응용할 수 있다
 +
*  정적분의 결과는 [[오일러 베타적분(베타함수)]] 로 표현할 수 있다
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
==탄젠트와 시컨트의 거듭제곱==
 +
 
 +
* http://en.wikipedia.org/wiki/Integral_of_secant_cubed
  
<math>\int\sin^n {x}\;dx = -\frac{\sin^{n-1} x\cos x}{n} + \frac{n-1}{n}\int\sin^{n-2} x\;dx</math>
+
  
 
+
<math>\begin{align} \int \sec^3 x \, dx &{}= \int u\,dv \\ &{}= uv - \int v\,du \\ &{} = \sec x \tan x - \int \sec x \tan^2 x\,dx \\ &{}= \sec x \tan x - \int \sec x\, (\sec^2 x - 1)\,dx \\ &{}= \sec x \tan x - \left(\int \sec^3 x \, dx - \int \sec x\,dx.\right) \\ &{}= \sec x \tan x - \int \sec^3 x \, dx + \int \sec x\,dx. \end{align}</math>
----
 
  
 
+
  
 
+
 +
==관련된 항목들==
 +
* [[부분적분]]
  
<math>\int\cos^n x\;dx = \frac{\cos^{n-1} x\sin x}{n} + \frac{n-1}{n}\int\cos^{n-2} x\;dx \qquad\mbox{(for }n>2\mbox{)}\,\!</math>
 
  
 
+
==리뷰, 에세이, 강의노트==
 +
* Katugampola, Udita N. “Geometric Approach to the Integral <math>\int \sec X\,dx</math>.” arXiv:1511.01006 [math], November 1, 2015. http://arxiv.org/abs/1511.01006.
  
<h5 style="line-height: 2em; margin: 0px;"> </h5>
+
[[분류:삼각함수]]
  
http://en.wikipedia.org/wiki/Integral_of_secant_cubed
+
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q987236 Q987236]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'integral'}, {'LOWER': 'of'}, {'LOWER': 'secant'}, {'LEMMA': 'cube'}]

2021년 2월 17일 (수) 05:47 기준 최신판

개요

사인과 코사인의 거듭제곱

  • 사인과 코사인의 거듭제곱\[\int\sin^n {x}\;dx = -\frac{\sin^{n-1} x\cos x}{n} + \frac{n-1}{n}\int\sin^{n-2} x\;dx \qquad\mbox{(for }n>2\mbox{)}\,\!\]\[\int\cos^n x\;dx = \frac{\cos^{n-1} x\sin x}{n} + \frac{n-1}{n}\int\cos^{n-2} x\;dx \qquad\mbox{(for }n>2\mbox{)}\,\!\]
(증명)

\(\int\sin^n {x}\,dx = \int\sin^{n-2}{x} (1-\cos^2 x)\,dx=\int\sin^{n-2}{x}-\sin^{n-2}{x}\cos^2 x\,dx=\int\sin^{n-2}{x}-\int \sin^{n-2}{x}\cos^2 x\,dx\)


\(\int \sin^{n-2}{x}\cos^2 x\,dx=\int (\sin^{n-2}{x}\cos x)\cos x \,dx=\frac{1}{n-1}\sin^{n-1}x\cos x+\int \frac{1}{n-1}\sin^{n-1}x \sin x dx=\frac{1}{n-1}\sin^{n-1}x\cos x+\frac{1}{n-1}\int \sin^{n}x \,dx\)

여기서 치환적분 \(u=\cos x\), \(dv=\sin^{n-2}x\cos x \,dx\)


\(\int\sin^n {x}\,dx=\int\sin^{n-2}{x}-\int \sin^{n-2}{x}\cos^2 x\,dx=\int\sin^{n-2}{x}-\frac{1}{n-1}\sin^{n-1}x\cos x-\frac{1}{n-1}\int \sin^{n}x \,dx\)

\(\frac{n}{n-1}\int \sin^{n}x \,dx=\int\sin^{n-2}{x}-\frac{1}{n-1}\sin^{n-1}x\cos x\)


\(\int\sin^n {x}\;dx = -\frac{\sin^{n-1} x\cos x}{n} + \frac{n-1}{n}\int\sin^{n-2} x\;dx\) ■




탄젠트와 시컨트의 거듭제곱


\(\begin{align} \int \sec^3 x \, dx &{}= \int u\,dv \\ &{}= uv - \int v\,du \\ &{} = \sec x \tan x - \int \sec x \tan^2 x\,dx \\ &{}= \sec x \tan x - \int \sec x\, (\sec^2 x - 1)\,dx \\ &{}= \sec x \tan x - \left(\int \sec^3 x \, dx - \int \sec x\,dx.\right) \\ &{}= \sec x \tan x - \int \sec^3 x \, dx + \int \sec x\,dx. \end{align}\)



관련된 항목들


리뷰, 에세이, 강의노트

  • Katugampola, Udita N. “Geometric Approach to the Integral \(\int \sec X\,dx\).” arXiv:1511.01006 [math], November 1, 2015. http://arxiv.org/abs/1511.01006.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'integral'}, {'LOWER': 'of'}, {'LOWER': 'secant'}, {'LEMMA': 'cube'}]