소수와 리만제타함수

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 12월 28일 (월) 03:32 판
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기

개요

  • 소수가 무한히 많음을 증명하는 어려운 방법.

\(\sum_{n\geq 1}\frac{1}{n^s}= \left(1 + \frac{1}{2^s} + \frac{1}{4^s} + \cdots \right) \left(1 + \frac{1}{3^s} + \frac{1}{9^s} + \cdots \right) \cdots \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots \right) \cdots\)

\(\zeta(s) =\prod_{p \text{:prime}} \frac{1}{1-p^{-s}}\)

\(\log \zeta(s) = \log \prod_{p \text{:prime}} \frac{1}{1-p^{-s}} =\sum_{p \text{:prime}} -\log (1-p^{-s})\)

\(\log(1+x) \approx x\)

\(\log \zeta(s) = \sum_{p \text{:prime}} -\log (1-p^{-s})\approx \sum_{p \text{:prime}} \ p^{-s}=\sum_{p \text{:prime}} \frac{1}{p^s}\)

\(\sum_{p \text{:prime}} \frac{1}{p}=\infty\)


하위주제들

관련된 단원

많이 나오는 질문


관련된 고교수학 또는 대학수학

관련된 다른 주제들

관련논문



관련기사

네이버 뉴스 검색 (키워드 수정)



블로그


이미지 검색


동영상