"슬레이터 18"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
1번째 줄: 1번째 줄:
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
  
 +
* [[슬레이터 18]]
 +
 +
 
 +
 +
 
 +
 +
<h5>개요</h5>
 +
 +
* [[로저스-라마누잔 항등식]] 의 하나<br><math>\sum_{n=0}^{\infty}\frac{q^{n(n+1)}}{ (q)_{n}}=\frac{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{2};q^{5})_{\infty}(q^{3};q^{5})_{\infty}}</math><br>
 +
* [[슬레이터 14]] 는 또다른 로저스-라마누잔 항등식
 +
 +
 
 +
 +
 
 +
 +
<h5>항등식의 분류</h5>
 +
 +
* [[슬레이터 목록 (Slater's list)]]
 +
*  B(1)<br>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">켤레 베일리 쌍의 유도</h5>
 +
 +
* [[q-가우스 합]] 에서 얻어진 다음 결과를 이용<br><math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>,  <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math><br><math>\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}</math><br>
 +
*   <br> 다음의 특수한 경우<br><math>x=q,y\to\infty, z\to\infty</math><br>
 +
*  얻어진 켤레 베일리 쌍 (relative to 1)<br><math>\delta_n=q^{n^2}</math><br><math>\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}</math><br>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">베일리 쌍의 유도</h5>
 +
 +
*  다음을 이용 '''[Slater51] '''(4.1)<br><math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math><br>
 +
*   <br> 다음의 특수한 경우<br><math>a=q,c\to\infty,d\to\infty</math><br>
 +
*   <br> 얻어진 베일리 쌍 (relative to 1)<br><math>\alpha_{0}=1</math>, <math>\alpha_{n}=(-1)^{n}q^{\frac{3}{2}n^2}(q^{\frac{3}{2}n}+q^{-\frac{3}{2}n})</math><br><math>\beta_n=\frac{1}{(q)_{n}}</math><br><math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q)_{n-r}(q)_{n+r}}=\frac{q^n}{(q)_{n}}</math> <br>
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">베일리 쌍</h5>
 +
 +
*  베일리 쌍과 켤레 베일리 쌍<br><math>\delta_n=q^{n^2}</math><br><math>\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}</math><br><math>\alpha_{0}=1</math>, <math>\alpha_{n}=(-1)^{n}q^{\frac{3}{2}n^2}(q^{\frac{3}{2}n}+q^{-\frac{3}{2}n})</math><br><math>\beta_n=\frac{q^n}{(q)_{n}}</math><br>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">q-series 항등식</h5>
 +
 +
*  항등식<br><math>\sum_{n=0}^{\infty}\frac{q^{n(n+1)}}{ (q)_{n}}=\frac{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{2};q^{5})_{\infty}(q^{3};q^{5})_{\infty}}</math><br>
 +
 +
* [[베일리 쌍(Bailey pair)과 베일리 보조정리]]<br><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}</math><br><math>\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{n^2+n}}{(q)_{n}}</math><br><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{1+\sum_{n=1}^{\infty}(-1)^{n}(q^{\frac{3n^2+3n}{2}}+q^{\frac{3n^2-3n}{2}})}{(q)_{\infty}}=\frac{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{2};q^{5})_{\infty}(q^{3};q^{5})_{\infty}}</math><br>
 +
 +
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 +
** http://www.research.att.com/~njas/sequences/?q=
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">베테 타입 방정식 (cyclotomic equation)</h5>
 +
 +
Let <math>\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{
 +
\prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}</math>.
 +
 +
Then <math>\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a</math>  has a unique root <math>0<\mu<1</math>. We get
 +
 +
<math>\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})</math>
 +
 +
 
 +
 +
a=2,d=1,e=1
 +
 +
<math>(1-x)^{1}=x^{2}</math>.
 +
 +
 <math>x=\frac{\sqrt{5}-1}{2}</math>
 +
 +
<math>4L(\frac{3-\sqrt{5}}{2})=\frac{2}{5}(\frac{2}{3}\pi^2)=\frac{4}{15}\pi^2</math>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 2em; margin: 0px;">다이로그 항등식</h5>
 +
 +
<math>L(\frac{3-\sqrt{5}}{2})=\frac{1}{15}\pi^2</math>
 +
 +
 
 +
 +
<math>L(\frac{\sqrt{5}-1}{2})=\frac{1}{10}\pi^2</math>

2011년 11월 15일 (화) 10:56 판

이 항목의 수학노트 원문주소

 

 

개요
  • 로저스-라마누잔 항등식 의 하나
    \(\sum_{n=0}^{\infty}\frac{q^{n(n+1)}}{ (q)_{n}}=\frac{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{2};q^{5})_{\infty}(q^{3};q^{5})_{\infty}}\)
  • 슬레이터 14 는 또다른 로저스-라마누잔 항등식

 

 

항등식의 분류

 

 

켤레 베일리 쌍의 유도
  • q-가우스 합 에서 얻어진 다음 결과를 이용
    \(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\),  \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
    \(\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}\)
  •  
    다음의 특수한 경우
    \(x=q,y\to\infty, z\to\infty\)
  • 얻어진 켤레 베일리 쌍 (relative to 1)
    \(\delta_n=q^{n^2}\)
    \(\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}\)

 

 

베일리 쌍의 유도
  • 다음을 이용 [Slater51] (4.1)
    \(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\)
  •  
    다음의 특수한 경우
    \(a=q,c\to\infty,d\to\infty\)
  •  
    얻어진 베일리 쌍 (relative to 1)
    \(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{\frac{3}{2}n^2}(q^{\frac{3}{2}n}+q^{-\frac{3}{2}n})\)
    \(\beta_n=\frac{1}{(q)_{n}}\)
    \(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q)_{n-r}(q)_{n+r}}=\frac{q^n}{(q)_{n}}\) 

 

 

 

베일리 쌍
  • 베일리 쌍과 켤레 베일리 쌍
    \(\delta_n=q^{n^2}\)
    \(\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}\)
    \(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{\frac{3}{2}n^2}(q^{\frac{3}{2}n}+q^{-\frac{3}{2}n})\)
    \(\beta_n=\frac{q^n}{(q)_{n}}\)

 

 

q-series 항등식
  • 항등식
    \(\sum_{n=0}^{\infty}\frac{q^{n(n+1)}}{ (q)_{n}}=\frac{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{2};q^{5})_{\infty}(q^{3};q^{5})_{\infty}}\)
  • 베일리 쌍(Bailey pair)과 베일리 보조정리
    \(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)
    \(\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{n^2+n}}{(q)_{n}}\)
    \(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{1+\sum_{n=1}^{\infty}(-1)^{n}(q^{\frac{3n^2+3n}{2}}+q^{\frac{3n^2-3n}{2}})}{(q)_{\infty}}=\frac{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{2};q^{5})_{\infty}(q^{3};q^{5})_{\infty}}\)

 

 

 

베테 타입 방정식 (cyclotomic equation)

Let \(\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{ \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}\).

Then \(\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a\)  has a unique root \(0<\mu<1\). We get

\(\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})\)

 

a=2,d=1,e=1

\((1-x)^{1}=x^{2}\).

 \(x=\frac{\sqrt{5}-1}{2}\)

\(4L(\frac{3-\sqrt{5}}{2})=\frac{2}{5}(\frac{2}{3}\pi^2)=\frac{4}{15}\pi^2\)

 

 

다이로그 항등식

\(L(\frac{3-\sqrt{5}}{2})=\frac{1}{15}\pi^2\)

 

\(L(\frac{\sqrt{5}-1}{2})=\frac{1}{10}\pi^2\)