아다마르 행렬 (Hadamard matrix)

수학노트
Pythagoras0 (토론 | 기여)님의 2014년 10월 26일 (일) 18:27 판
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기

개요[편집]

  • 1과 -1을 성분으로 갖는 직교행렬


[편집]

크기 2[편집]

$$ \left( \begin{array}{cc} 1 & -1 \\ 1 & 1 \\ \end{array} \right) $$

크기 4[편집]

$$ \left( \begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ \end{array} \right) $$

크기 12[편집]

$$ \left( \begin{array}{cccccccccccc} 1 & -1 & -1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & 1 \\ -1 & 1 & -1 & -1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & -1 & -1 & 1 & 1 \\ 1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & -1 & -1 & 1 \\ -1 & 1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 \\ -1 & -1 & 1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ -1 & -1 & -1 & 1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 \\ 1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 \\ -1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & 1 & -1 & 1 \\ -1 & -1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \end{array} \right) $$


아마마르 최대 행렬식 문제[편집]


메모[편집]


매스매티카 파일 및 계산 리소스[편집]


사전 형태의 자료[편집]