역삼각함수

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 12월 28일 (월) 02:44 판
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기

개요

  • 사인/아크사인함수 덧셈정리의 적분표현\[\sin \left(\theta_1+\theta_2\right)=\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2\]\[\arcsin x+\arcsin y=\arcsin (x\sqrt{1-y^2}+y\sqrt{1-x^2})\]\[\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^2}}}dx = \int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx \]
  • 탄젠트/아크탄젠트 함수 덧셈정리의 적분표현\[\tan(\theta_1+\theta_2)=\frac{\tan\theta_1+\tan\theta_2}{1-\tan\theta_1\tan\theta_2}\]\[\arctan x+\arctan y = \arctan{\frac{x+y}{1-xy}}\]\[\int_0^x \frac{dx}{1+x^2} + \int_0^y \frac{dx}{1+x^2} = \int_0^{\frac{x+y}{1-xy}} \frac{dx}{1+x^2}\]

\(x>0\) 일 때,

\(\arctan x+\arctan \frac{1}{x} = \frac{\pi}{2}\)


\(2(\arcsin x)^2=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}\)

\(\frac{2x \arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n\binom{2n}{n}}\)




역사



메모

관련된 항목들



수학용어번역



매스매티카 파일 및 계산 리소스



사전 형태의 자료












블로그