"연분수와 유리수 근사"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
127번째 줄: 127번째 줄:
 
==사전 형태의 자료==
 
==사전 형태의 자료==
  
* [http://ko.wikipedia.org/wiki/%EC %97 % B0 % EB % B6 %84 % EC %88 %98 http://ko.wikipedia.org/wiki/연분수]
+
* http://ko.wikipedia.org/wiki/연분수
 
* http://en.wikipedia.org/wiki/continued_fraction
 
* http://en.wikipedia.org/wiki/continued_fraction
* [http://en.wikipedia.org/wiki/Dirichlet%27 s_theorem _on _diophantine _approximation http://en.wikipedia.org/wiki/Dirichlet's_theorem _on _diophantine _approximation]
+
* http://en.wikipedia.org/wiki/Dirichlet's_theorem _on _diophantine _approximation
 
* http://en.wikipedia.org/wiki/Gauss%27 s_continued _fraction
 
* http://en.wikipedia.org/wiki/Gauss%27 s_continued _fraction
 
* http://mathworld.wolfram.com/ContinuedFractionConstant.html
 
* http://mathworld.wolfram.com/ContinuedFractionConstant.html
* http://viswiki.com/en/
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* 다음백과사전 http://enc.daum.net/dic100/search.do?q=
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 
 
 
   
 
   
  

2012년 9월 8일 (토) 14:31 판

연분수

\(\frac{1+\sqrt5}{2}=1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \ddots}}}\)

\(\frac{-1+\sqrt5}{2}=\cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \ddots}}}\)

\(-1+\sqrt{2}=\cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \ddots}}}\)



연분수와 유리수 근사

  • 무리수 \(\alpha\)에 대하여, 유리수 \(p/q\)가 다음 부등식

\[|\alpha-\frac{p}{q}|<\frac{1}{2{q^2}}\] 을 만족시키는 경우, \(p/q\)는 무리수 \(\alpha\)의 단순연분수 전개의 convergents 중의 하나이다


유리수 근사와 황금비

유리수 근사와 황금비(i)

  • (후르비츠의 정리)
    무리수 \(\alpha\) 에 대하여, 부등식

\[|\frac{p}{q}-\alpha|<\frac{1}{\sqrt{5}{q^2}}\]

는 무한히 많은 유리수\(p/q\) 에 의하여 만족된다. 하지만 여기서 \(\sqrt{5}\) 는 더 큰 수로 대체될 수 없다.



유리수 근사와 황금비(ii)

후르비츠의 정리에서 \(\sqrt{5}\) 의 위치에 그보다 작은 수(예를 들자면 2)가 있어도 정리는 참이지만, \(\sqrt{5}\) 보다 큰 수는 불가능하다.

임의의 \(0<h<1\) 에 대하여

\(|\frac{p}{q}-\frac{1+\sqrt{5}}{2}|<\frac{h}{\sqrt{5}{q^2}}\)

가 유한히 많은 유리수\(p/q\)에 의해서만 만족됨을 보이면 충분하다.


(증명)

위의 부등식이 만족되는 경우, 적당한 \(|\theta|<h<1\)에 대하여, 다음과 같이 쓸 수 있다.

\(\frac{p}{q}-\frac{1+\sqrt{5}}{2}=\frac{\theta}{\sqrt{5}{q^2}}\)


\(\frac{p}{q}-\frac{1}{2}=\frac{\sqrt{5}}{2}+\frac{\theta}{\sqrt{5}{q^2}}\)


\(5q^2\{(p^2-pq-q^2)-\theta\}=\theta^2\)


\((p^2-pq-q^2)-\theta\) 는 양수이고, 정수 \(p^2-pq-q^2\)는 0이 될 수 없으므로, \(p^2-pq-q^2\geq1\)

따라서,

\(q^2=\frac{\theta^2}{5\{(p^2-pq-q^2)-\theta\}}<\frac{h^2}{5(1-h)}\)

그러므로, 주어진 부등식은 유한히 많은 \(q\) 에 대해서만 참이다. 또한 각각의 \(q\)에 대하여, 오직 유한히 많은 \(p\) 만이 부등식을 만족시킨다. ■




연분수의 재미있는 응용




메모



관련된 고교수학 또는 대학수학



관련된 항목들



사전 형태의 자료



관련논문



관련도서

관련링크와 웹페이지



관련기사




블로그

  • 구글 블로그 검색 [1]