"오일러 베타적분(베타함수)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
  
 
* [[오일러 베타적분(베타함수)|오일러 베타적분]]
 
* [[오일러 베타적분(베타함수)|오일러 베타적분]]
10번째 줄: 10번째 줄:
  
 
*  두 변수 x,y 에 대하여 다음과 같이 적분으로 정의되는 함수<br><math>B(x,y) = \int_0^1t^{x-1}(1-t)^{y-1}\,dt</math><br>
 
*  두 변수 x,y 에 대하여 다음과 같이 적분으로 정의되는 함수<br><math>B(x,y) = \int_0^1t^{x-1}(1-t)^{y-1}\,dt</math><br>
* [[셀베르그 적분(Selberg integral)|Selberg 적분]] 으로 <br>
+
* [[셀베르그 적분(Selberg integral)|Selberg 적분]] 으로 일반화된다<br>
 +
 
 +
 
  
 
 
 
 
139번째 줄: 141번째 줄:
 
* [[감마함수]]<br>
 
* [[감마함수]]<br>
 
* [[가우시안 적분]]<br>
 
* [[가우시안 적분]]<br>
 +
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]<br>
  
 
 
 
 
168번째 줄: 171번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
  
* [http://www.maths.uq.edu.au/~uqowarna/talks/Wien.pdf Beta Integrals]<br>
+
* [http://www.maths.uq.edu.au/%7Euqowarna/talks/Wien.pdf Beta Integrals]<br>
 
** S. Ole Warnaar
 
** S. Ole Warnaar
  

2010년 5월 14일 (금) 06:28 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 두 변수 x,y 에 대하여 다음과 같이 적분으로 정의되는 함수
    \(B(x,y) = \int_0^1t^{x-1}(1-t)^{y-1}\,dt\)
  • Selberg 적분 으로 일반화된다

 

 

 

성질

 

 

삼각함수의 적분과의 관계

\(B(x,y) = 2\int_0^{\pi/2}(\sin\theta)^{2x-1}(\cos\theta)^{2y-1}\,d\theta\)

\(\int_0^{\frac{\pi}{2}}\sin^{p}\theta{d\theta}= \frac{1}{2}B(\frac{p+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{p}{2}+\frac{1}{2})}{2\Gamma(\frac{p}{2}+1)}\)

\(\int_0^{\frac{\pi}{2}}\cos^{p}\theta{d\theta}= \frac{1}{2}B(\frac{p+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{p}{2}+\frac{1}{2})}{2\Gamma(\frac{p}{2}+1)}\)

\(\int_0^{\frac{\pi}{2}}\sin^{2n}\theta{d\theta}= \frac{\sqrt{\pi}\Gamma(n+\frac{1}{2})}{2\Gamma(n+1)}=\frac{\pi}{2}\frac{(\frac{1}{2})_n}{(1)_n}\)

(증명)

\(B(x,y) = \int_0^1t^{x-1}(1-t)^{y-1}\,dt\) 에서 \(t^2=\cos \theta\) 로 치환하여 증명.

 

 

 

베타적분과 감마함수

\(B(x,y)=\dfrac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)}\)

 

(증명)

가우시안 적분의 아이디어와 비슷하다.

 

\(\Gamma(x)\Gamma(y) = \int_0^\infty\ e^{-u} u^{x-1}\,du \int_0^\infty\ e^{-v} v^{y-1}\,dv\)

\(u = a^2\)와 \(v = b^2\) 로 치환하면,

\(\Gamma(x)\Gamma(y) = 4\int_0^\infty\ e^{-a^2} a^{2x-1}\,da \int_0^\infty\ e^{-b^2} b^{2y-1}\,db\)

\(= 4\int_{0}^\infty\ \int_{0}^\infty\ e^{-(a^2+b^2)} a^{2x-1} b^{2y-1} \,da \,db\)

\(=4\int_0^{\frac{\pi}{2}}\int_0^\infty\ e^{-r^2} (r\cos\theta)^{2x-1} (r\sin\theta)^{2y-1} r \, dr \,d\theta\)

\(= 4\int_0^\infty\ e^{-r^2} r^{2x+2y-2} r\, dr \int_0^{\frac{\pi}{2}}(\cos\theta)^{2x-1} (\sin\theta)^{2y-1}\, d\theta\)

\(= 2\int_0^\infty\ e^{-r^2} r^{2(x+y-1)} \, d(r^2) \int_0^{\pi/2}\ (\cos\theta)^{2x-1} (\sin\theta)^{2y-1} \,d\theta\)

\(= \Gamma(x+y)B(x,y)\)

 

 

무리함수의 적분과 감마함수

\(n>0\)에 대하여, 

\(\int_0^1\frac{dx}{\sqrt{1-x^n}}=\frac{1}{n}B(\frac{1}{2},\frac{1}{n})\)

이 성립한다

 

 

 

 

타원적분과의 관계

 

 

 

베타적분과 초월수

(정리)

\(a,b,a+b \in \mathbb{Q-Z}\) 라 하자. \(B(a,b)\) 는 초월수이다. 즉

\(B(a,b) = \frac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)}= \int_0^1t^{a-1}(1-t)^{b-1}\,dt\)

는 초월수이다.

 

 

재미있는 사실

 

 

역사

 

 

관련된 항목들

 

 

수학용어번역

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그