원분다항식(cyclotomic polynomial)

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요


정의

  • \(\Phi_n(X) = \prod_\omega (X-\omega)\)
    • 여기서 \(\omega\)는 primitive n-th root of unity (단위근)
  • 차수는 오일러의 totient 함수 를 사용하여 \(\varphi(n)\) 로 표현됨
  • \(x^n-1= \prod_{d|n}\Phi_d(x)\)



원분다항식의 상호법칙

  • 소수 \(p\) 에 대해 \(\Phi_n(x) \pmod p\) 가 어떻게 분해되는가의 문제


정리

\(p\in (\mathbb{Z}/n\mathbb{Z})^\times\)의 order가 \(r\)이라 하자. 즉 \(r\)이 \(p^r=1\pmod n\) 을 만족시키는 가장 작은 자연수라 하자.

그러면 \(\Phi_n(x) \pmod p\) 는 차수가 \(r\)인 기약다항식들의 곱으로 표현된다. 즉 \(\Phi_n(x) \pmod p\)의 분해는, \(p\pmod n\)에 의해 결정된다.


따름정리

\(n | p-1\) \(\iff\) \(\Phi_n(x) \pmod p\)는 일차식들로 분해된다



원분다항식 목록

\(\begin{array}{l|l|l} n & \varphi (n) & \Phi _n(x) \\ \hline 1 & 1 & 1-x \\ 2 & 1 & 1+x \\ 3 & 2 & 1+x+x^2 \\ 4 & 2 & 1+x^2 \\ 5 & 4 & 1+x+x^2+x^3+x^4 \\ 6 & 2 & 1-x+x^2 \\ 7 & 6 & 1+x+x^2+x^3+x^4+x^5+x^6 \\ 8 & 4 & 1+x^4 \\ 9 & 6 & 1+x^3+x^6 \\ 10 & 4 & 1-x+x^2-x^3+x^4 \\ 11 & 10 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10} \\ 12 & 4 & 1-x^2+x^4 \\ 13 & 12 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12} \\ 14 & 6 & 1-x+x^2-x^3+x^4-x^5+x^6 \\ 15 & 8 & 1-x+x^3-x^4+x^5-x^7+x^8 \\ 16 & 8 & 1+x^8 \\ 17 & 16 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16} \\ 18 & 6 & 1-x^3+x^6 \\ 19 & 18 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16}+x^{17}+x^{18} \\ 20 & 8 & 1-x^2+x^4-x^6+x^8 \end{array}\)

  • \(n=105\)일 때, 0또는 \(\pm 1\)외의 계수가 등장한다

\[ \begin{align*} \Phi_{105}(x)&= 1 + x + x^{2} - x^{5} - x^{6} - 2 x^{7} \\ & \quad -x^{8} - x^{9} + x^{12} + x^{13} + x^{14} + x^{15} \\ & \quad +x^{16} + x^{17} - x^{20} - x^{22} - x^{24} - x^{26} \\ & \quad -x^{28} + x^{31} + x^{32} + x^{33} + x^{34} + x^{35} \\ & \quad +x^{36} - x^{39} - x^{40} - 2 x^{41} - x^{42} - x^{43} \end{align*} \]

역사




관련된 항목들



수학용어번역


매스매티카 파일 및 계산 리소스


사전형태의 참고자료


관련논문

  • Bartlomiej Bzdega, Products of cyclotomic polynomials on unit circle, arXiv:1606.07622 [math.NT], June 24 2016, http://arxiv.org/abs/1606.07622
  • Pomerance, Carl, Lola Thompson, and Andreas Weingartner. “On Integers \(n\) for Which \(X^n-1\) Has a Divisor of Every Degree.” arXiv:1511.03357 [math], November 10, 2015. http://arxiv.org/abs/1511.03357.
  • Somu, Sai Teja. “On the Distribution of Numbers Related to the Divisors of \(x^n-1\).” arXiv:1511.03230 [math], November 10, 2015. http://arxiv.org/abs/1511.03230.
  • Somu, Sai Teja. “On the Coefficients of Divisors of X^n-1.” arXiv:1511.03226 [math], November 10, 2015. http://arxiv.org/abs/1511.03226.
  • Damianou, Pantelis A. ‘Monic Polynomials in \(Z[x]\) with Roots in the Unit Disc’. arXiv:1507.02419 [math], 9 July 2015. http://arxiv.org/abs/1507.02419.
  • Martínez, F. E. Brochero, C. R. Giraldo Vergara, and L. Batista de Oliveira. “Explicit Factorization of \(x^n-1\in \mathbb F_q[x]\).” arXiv:1404.6281 [cs, Math], April 24, 2014. http://arxiv.org/abs/1404.6281.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'cyclotomic'}, {'LEMMA': 'polynomial'}]