"원분체 (cyclotomic field)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
43번째 줄: 43번째 줄:
 
<math>\sigma_p(\zeta)=\zeta ^p=\zeta^{an+b}=\zeta^b</math> 이므로, 아틴심볼은 p를 n으로 나눈 나머지에 의존
 
<math>\sigma_p(\zeta)=\zeta ^p=\zeta^{an+b}=\zeta^b</math> 이므로, 아틴심볼은 p를 n으로 나눈 나머지에 의존
  
[[유한생성 아벨군의 기본정리]]
+
* [[유한생성 아벨군의 기본정리]]
  
 
 
 
 
110번째 줄: 110번째 줄:
 
 
 
 
  
<h5>재미있는 사실</h5>
+
<h5>메모</h5>
  
 
+
* Barry Mazur [http://www.ams.org/journals/bull/2011-48-02/S0273-0979-2011-01326-X/home.html How can we construct abelian Galois extensions of basic number fields?] Bull. Amer. Math. Soc. 48 (2011), 155-209.
 
 
* 네이버 지식인 [http://kin.search.naver.com/search.naver?where=kin_qna&query=%EC%9B%90%EB%B6%84%EC%B2%B4 http://kin.search.naver.com/search.naver?where=kin_qna&query=원분체]
 
  
 
 
 
 

2011년 11월 8일 (화) 02:22 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 크로네커-베버 정리
  • cyclotomic units
  • class field theory
  • Iwasawa theory

 

 

기호
  • \(\zeta_n\)는 원시 n-단위근
  • \(K = \mathbb Q(\zeta_n)\)

 

 

갈루아군

(정리)

\(G= \text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/n\mathbb{Z})^\times\)

 

 

\(\wp \subset K\) 는 소수 p 를 나누는 unramified prime ideal이라 하자. 

소수 p에 대한 아틴 심볼은  \(\sigma_p(\alpha)=\alpha ^p \pmod \wp\) 를 만족시키는 \(\sigma_p \in \text{Gal}(K/\mathbb Q)\) 로 정의

\(\sigma_p(\zeta)=\zeta ^p=\zeta^{an+b}=\zeta^b\) 이므로, 아틴심볼은 p를 n으로 나눈 나머지에 의존

 

 

원분체의 데데킨트 제타함수
  • \(K = \mathbb Q(\zeta_n)\)에 대한 데데킨트 제타함수
    \(\zeta_{K}(s)=\sum_{\mathfrak{a} \text{:ideals}}\frac{1}{N(\mathfrak{a})^s}=\prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-N(\mathfrak{p})^{-s}}\)

 

  • \(G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/n\mathbb{Z})^\times\)의 쌍대군  \(\hat{G}\)을 정의
  • \(\hat{G}\)의 원소는 모두 적당한 conductor \(f|n\) 을 갖는 원시(primitive) 디리클레 character 로부터 얻어진다.
  • 이 디리클레 character 의 집합을 \(\tilde{G}\)라 하자

(정리)

\(\zeta_K(s)=\prod_{\chi\in \tilde{G}}L(s,\chi)\)

 

(따름정리)

등차수열의 소수분포에 관한 디리클레 정리

 

  • \(K = \mathbb Q(\zeta_3)=\mathbb{Q}(\sqrt{-3})\)의 경우 \(d_K=-3\)
    • \(G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/3\mathbb{Z})^\times =\{1,2\}\)
    • \(\hat{G}=\{1,\chi\}\)
      \(\chi(a)=\left(\frac{a}{3}\right)\)
    • \(1\in \hat{G}\)의 conductor는 1
    • \(\chi\in\hat{G}\)의 conductor는 3
    • 따라서 제타함수의 분해는 다음과 같음
      \(\zeta_{K}(s)=\zeta(s)L(\chi,s)\)
  • \(K = \mathbb Q(\zeta_4)=\mathbb{Q}(\sqrt{-1})\)의 경우 \(d_K=-4\)
    • \(G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/4\mathbb{Z})^\times =\{1,3\}\)
    • \(\hat{G}=\{1,\chi\}\)
      \(\chi(a)=\left(\frac{-4}{a}\right)=\left(\frac{-1}{a}\right)\)
    • \(1\in \hat{G}\)의 conductor는 1
    • \(\chi\in\hat{G}\)의 conductor는 4
    • 따라서 제타함수의 분해는 다음과 같음
      \(\zeta_{K}(s)=\zeta(s)L(\chi,s)\)

 

 

디리클레 class number 공식과의 관계

\(\zeta_{K}(s)=\sum_{\mathfrak{a} \text{:ideals}}\frac{1}{N(\mathfrak{a})^s}=\prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-N(\mathfrak{p})^{-s}}\)

 

 

class number
  • \(K = \mathbb Q(\zeta_n)\) 의 class number \(h_K\)
  • \(K^{+} :=\mathbb Q(\zeta_n)^{+}=K\cap \mathbb{R}\)
  • \(h_K=h_K^{+}h_K^{-}\)
  • \(h_K^{-}\)를 relative class number라 한다

 

 

메모

 

 

역사

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그