원환면 (torus)

수학노트
둘러보기로 가기 검색하러 가기

개요[편집]

  • genus 가 1인 컴팩트 유향곡면
  • 복소함수론에서는 타원함수 를 위상적으로 원환면인 리만곡면에서 정의된 함수로 이해한다



매개화[편집]

  • 매개화
  • \(X(u,v)=\{\cos (u) (a+b \cos (v)),\sin (u) (a+b \cos (v)),b \sin (v)\}\)\[0<u<2\pi\], \(0<v<2\pi\)
  • \(X_u=\{\sin (u) (-(a+b \cos (v))),\cos (u) (a+b \cos (v)),0\}\)\[X_v=\{-b \cos (u) \sin (v),-b \sin (u) \sin (v),b \cos (v)\}\]
  • \(N=\{b \cos (u) \cos (v) (a+b \cos (v)),b \sin (u) \cos (v) (a+b \cos (v)),b \sin (v) (a+b \cos (v))\}\)
  • 왼쪽 그림의 붉은 색 작은 원을 y-축에 대하여 회전하여, 오른쪽 원환면을 얻는다
    원환면 (torus)1.gif -> 원환면 (torus)2.gif





제1기본형식[편집]

  • \(E=(a+b \cos (v))^2\)
  • \(F=0\)
  • \(G=b^2\)



크리스토펠 기호[편집]

  • 크리스토펠 기호 항목 참조\[\Gamma^1_{11}=0\]\[\Gamma^1_{12}=-\frac{b \sin (v)}{a+b \cos (v)}\]\[\Gamma^1_{21}=-\frac{b \sin (v)}{a+b \cos (v)}\]\[\Gamma^1_{22}=0\]\[\Gamma^2_{11}=\frac{\sin (v) (a+b \cos (v))}{b}\]\[\Gamma^2_{12}=0\]\[\Gamma^2_{21}=0\]\[\Gamma^2_{22}=0\]



측지선[편집]

  • 측지선 이 만족시키는 미분방정식\[\frac{d^2\alpha_k }{dt^2} + \Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0\]
  • 풀어쓰면, \[\frac{d^2 u}{dt^2} -\frac{2b \sin (v)}{a+b \cos (v)}\frac{du }{dt}\frac{dv }{dt} = 0\]\[\frac{d^2 v}{dt^2} + \frac{\sin (v) (a+b \cos (v))}{b}\frac{du }{dt}\frac{du }{dt} = 0\]



가우스곡률[편집]

  • 가우스곡률 항목 참조\[K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)=\frac{\cos (v)}{a b+b^2 \cos (v)}\]



역사[편집]



메모[편집]



관련된 항목들[편집]



매스매티카 파일 및 계산 리소스[편집]

리뷰논문, 에세이, 강의노트[편집]

관련논문[편집]