"월리스 곱 (Wallis product formula)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎메타데이터: 새 문단)
 
94번째 줄: 94번째 줄:
 
[[분류:원주율]]
 
[[분류:원주율]]
 
[[분류:미적분학]]
 
[[분류:미적분학]]
 
==메타데이터==
 
===위키데이터===
 
* ID :  [https://www.wikidata.org/wiki/Q208359 Q208359]
 
===Spacy 패턴 목록===
 
* [{'LOWER': 'john'}, {'LEMMA': 'Wallis'}]
 
  
 
== 노트 ==
 
== 노트 ==

2021년 2월 26일 (금) 01:38 기준 최신판

개요

  • 1655년, 영국 수학자 월리스(John Wallis)는 월리스 곱이라 불려지는 다음과 같은 공식을 남긴다

\[\lim_{n \rightarrow \infty}\big(\frac{2}{1}\cdot \frac{2}{3}\cdot \frac{4}{3}\cdot \frac{4}{5}\cdots \frac{2n}{2n - 1} \cdot\frac{2n}{2n+1}\big) = \frac{\pi}{2}\] \[\prod_{k=1}^{\infty}\frac{4k^2-1}{4k^2}=\frac{2}{\pi}\]

\[\frac{1}{2^{2n}}{{(2n)!}\over{n!n!}}=\frac{1}{2^{2n}}{2n\choose n}\approx\frac{1}{\sqrt{\pi n}}\]


증명

  • 다음과 같이 수열 \(\{a_n\}\)을 정의하자 \[a_n:=\int_0^{\pi}\sin^{n}\theta{d\theta}= B(\frac{n+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{n}{2}+\frac{1}{2})}{\Gamma(\frac{n}{2}+1)}\] 여기서 \(B(x,y)\)는 오일러 베타적분.
  • 수열 \(\{a_n\}\)은 다음 점화식을 만족시킨다 \[a_0=\pi,a_1=2,\] \[a_{n}=\frac{n-1}{n}a_{n-2} \label{rec}\]
보조정리1

\[\frac{\frac{a_{2n}}{a_{2n+1}}}{\pi /2}=\prod _{k=1}^n \frac{4 k^2-1}{4 k^2}\label{prod}\]

증명

\ref{rec}로부터 다음을 얻는다 \[\frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\frac{4 k^2-1}{4 k^2}\] 으로부터 \[\prod _{k=1}^n \frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\prod _{k=1}^n \frac{4 k^2-1}{4 k^2}\]을 얻는다. 한편, \[\prod _{k=1}^n \frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\frac{a_{1}a_{2n}}{a_{0} a_{2n+1}}=\frac{\frac{a_{2n}}{a_{2n+1}}}{\pi /2}\] 로부터 \ref{prod}을 얻는다. ■

보조정리2

\[\lim_{n\to \infty } \, \frac{a_{2 n}}{a_{2 n+1}}=1 \label{lim}\]

증명

\(a_{n}\)은 단조감소수열이므로, 다음 부등식이 성립한다 \[1 \le \frac{a_{2n}}{a_{2n+1}} \le \frac{a_{2n-1}}{a_{2n+1}}=\frac{2n+1}{2n}\] 우변에서는 \ref{rec}이 사용되었다. 따라서 샌드위치 정리에 의해 \[\lim_{n\to \infty } \, \frac{a_{2 n}}{a_{2 n+1}}=1\] ■


보조정리1과 보조정리2로부터 월리스 곱을 얻는다 ■


사인함수의 무한곱 표현을 이용한 증명

  • 다음 사인함수의 무한곱 표현에서 \(x=1/2\) 일 때, 월리스 곱을 얻는다

\[\sin{\pi x} = \pi x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)\label{sinpro}\]


역사

  • 드무아브르의 발견은 대략 1730년대 즈음
  • 데카르트(1596년 3월-1650년 2월)
  • 뉴턴(1643년 1월-1727년 3월)



메모

관련된 항목들


매스매티카 파일 및 계산 리소스


사전형태의 자료



블로그


관련논문

  • Friedmann, Tamar, and C. R. Hagen. “Quantum Mechanical Derivation of the Wallis Formula for \(\pi\).” arXiv:1510.07813 [math-Ph, Physics:quant-Ph], October 27, 2015. http://arxiv.org/abs/1510.07813.

노트

말뭉치

  1. Comparison of the convergence of the Wallis product (purple asterisks) and several historical infinite series foris the approximation after takingterms.[1]
  2. The product, as n goes to infinity, is known as the Wallis product, and it is amazingly equal to π/2 ≈ 1.571.[2]
  3. There are some interesting details in the historical calculation of what is now called the Wallis product.[2]
  4. The results involved π/4 as well as the fractions involved in the Wallis product, and Wallis could re-write the expressions to find π in terms of a fractional product.[2]
  5. We can derive the Wallis product formula from these integrals.[2]
  6. I know how the value for the Wallis product was found, but none of these techniques seem to work on this seemingly related product.[3]
  7. Do you know or can you provide simple proofs of the above equation which do not use the Wallis product?[4]
  8. I would be very curious to see if anyone has written on seeing the Wallis product this way in terms of sphere volumes before.[5]
  9. Last week my cousin told me Wallis' product was quite his favorite formula in mathematics.[6]
  10. I remembered the thread opened on this forum about PI approximations (like 355 / 113), and we decided to program Wallis product on Free42 while having a coffee...[6]
  11. In the previous post I mentioned about how to demonstrate the Wallis product for pi by starting from the powered sine integration.[7]
  12. This time, we’re gonna see how to derive the Wallis product with Euler’s infinite product representation for sine function.[7]
  13. As a refresher, here’s the Wallis product for pi that we are trying to prove.[7]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'wallis'}, {'LEMMA': 'product'}]
  • [{'LOWER': 'wallis'}, {'LOWER': "'"}, {'LEMMA': 'product'}]