월리스 곱 (Wallis product formula)

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

  • 1655년, 영국 수학자 월리스(John Wallis)는 월리스 곱이라 불려지는 다음과 같은 공식을 남긴다

\[\lim_{n \rightarrow \infty}\big(\frac{2}{1}\cdot \frac{2}{3}\cdot \frac{4}{3}\cdot \frac{4}{5}\cdots \frac{2n}{2n - 1} \cdot\frac{2n}{2n+1}\big) = \frac{\pi}{2}\] \[\prod_{k=1}^{\infty}\frac{4k^2-1}{4k^2}=\frac{2}{\pi}\]

\[\frac{1}{2^{2n}}{{(2n)!}\over{n!n!}}=\frac{1}{2^{2n}}{2n\choose n}\approx\frac{1}{\sqrt{\pi n}}\]


증명

  • 다음과 같이 수열 \(\{a_n\}\)을 정의하자 \[a_n:=\int_0^{\pi}\sin^{n}\theta{d\theta}= B(\frac{n+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{n}{2}+\frac{1}{2})}{\Gamma(\frac{n}{2}+1)}\] 여기서 \(B(x,y)\)는 오일러 베타적분.
  • 수열 \(\{a_n\}\)은 다음 점화식을 만족시킨다 \[a_0=\pi,a_1=2,\] \[a_{n}=\frac{n-1}{n}a_{n-2} \label{rec}\]
보조정리1

\[\frac{\frac{a_{2n}}{a_{2n+1}}}{\pi /2}=\prod _{k=1}^n \frac{4 k^2-1}{4 k^2}\label{prod}\]

증명

\ref{rec}로부터 다음을 얻는다 \[\frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\frac{4 k^2-1}{4 k^2}\] 으로부터 \[\prod _{k=1}^n \frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\prod _{k=1}^n \frac{4 k^2-1}{4 k^2}\]을 얻는다. 한편, \[\prod _{k=1}^n \frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\frac{a_{1}a_{2n}}{a_{0} a_{2n+1}}=\frac{\frac{a_{2n}}{a_{2n+1}}}{\pi /2}\] 로부터 \ref{prod}을 얻는다. ■

보조정리2

\[\lim_{n\to \infty } \, \frac{a_{2 n}}{a_{2 n+1}}=1 \label{lim}\]

증명

\(a_{n}\)은 단조감소수열이므로, 다음 부등식이 성립한다 \[1 \le \frac{a_{2n}}{a_{2n+1}} \le \frac{a_{2n-1}}{a_{2n+1}}=\frac{2n+1}{2n}\] 우변에서는 \ref{rec}이 사용되었다. 따라서 샌드위치 정리에 의해 \[\lim_{n\to \infty } \, \frac{a_{2 n}}{a_{2 n+1}}=1\] ■


보조정리1과 보조정리2로부터 월리스 곱을 얻는다 ■


사인함수의 무한곱 표현을 이용한 증명

  • 다음 사인함수의 무한곱 표현에서 \(x=1/2\) 일 때, 월리스 곱을 얻는다

\[\sin{\pi x} = \pi x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)\label{sinpro}\]


역사

  • 드무아브르의 발견은 대략 1730년대 즈음
  • 데카르트(1596년 3월-1650년 2월)
  • 뉴턴(1643년 1월-1727년 3월)



메모

관련된 항목들


매스매티카 파일 및 계산 리소스


사전형태의 자료



블로그


관련논문

  • Friedmann, Tamar, and C. R. Hagen. “Quantum Mechanical Derivation of the Wallis Formula for \(\pi\).” arXiv:1510.07813 [math-Ph, Physics:quant-Ph], October 27, 2015. http://arxiv.org/abs/1510.07813.

노트

말뭉치

  1. Comparison of the convergence of the Wallis product (purple asterisks) and several historical infinite series foris the approximation after takingterms.[1]
  2. The product, as n goes to infinity, is known as the Wallis product, and it is amazingly equal to π/2 ≈ 1.571.[2]
  3. There are some interesting details in the historical calculation of what is now called the Wallis product.[2]
  4. The results involved π/4 as well as the fractions involved in the Wallis product, and Wallis could re-write the expressions to find π in terms of a fractional product.[2]
  5. We can derive the Wallis product formula from these integrals.[2]
  6. I know how the value for the Wallis product was found, but none of these techniques seem to work on this seemingly related product.[3]
  7. Do you know or can you provide simple proofs of the above equation which do not use the Wallis product?[4]
  8. I would be very curious to see if anyone has written on seeing the Wallis product this way in terms of sphere volumes before.[5]
  9. Last week my cousin told me Wallis' product was quite his favorite formula in mathematics.[6]
  10. I remembered the thread opened on this forum about PI approximations (like 355 / 113), and we decided to program Wallis product on Free42 while having a coffee...[6]
  11. In the previous post I mentioned about how to demonstrate the Wallis product for pi by starting from the powered sine integration.[7]
  12. This time, we’re gonna see how to derive the Wallis product with Euler’s infinite product representation for sine function.[7]
  13. As a refresher, here’s the Wallis product for pi that we are trying to prove.[7]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'wallis'}, {'LEMMA': 'product'}]
  • [{'LOWER': 'wallis'}, {'LOWER': "'"}, {'LEMMA': 'product'}]