"유수 정리 (residue theorem)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
 
(같은 사용자의 중간 판 13개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
* [[유수정리(residue theorem)]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
 
+
* [[복소함수론]]의 주요 정리 중 하나
 
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==응용: 데데킨트 합==
 
 
 
* [[데데킨트 합]]<br>
 
 
 
 
 
 
 
 
 
  
 
==응용==
 
==응용==
 +
* [[데데킨트 합]]
 +
* [[왓슨 변환(Watson transform)]]
  
* [[왓슨 변환(Watson transform)]]<br>
+
:<math>\sum_{k=1}^{\infty}\frac{1}{k^{4}-a^4}=\frac{1}{2a^4}-\frac{\pi \cot (\pi a)}{4 a^3}-\frac{\pi \coth (\pi a)}{4 a^3}</math>
 
+
:<math>\sum_{n=-\infty}^{\infty}\frac{1}{n^2+n+1}=\frac{2\pi  \tanh \left(\frac{\sqrt{3} \pi }{2}\right)}{\sqrt{3}}</math>
 
 
 
 
<math>\sum_{k=1}^{\infty}\frac{1}{k^{4}-a^4}=\frac{1}{2a^4}-\frac{\pi \cot (\pi a)}{4 a^3}-\frac{\pi \coth (\pi a)}{4 a^3}</math>
 
  
<math>\sum_{n=-\infty}^{\infty}\frac{1}{n^2+n+1}=\frac{2\pi \tanh \left(\frac{\sqrt{3} \pi }{2}\right)}{\sqrt{3}}</math>
+
   
  
 
+
  
 
+
 
 
 
 
  
 
==역사==
 
==역사==
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
*  
 
  
 
+
  
 
+
  
 
==메모==
 
==메모==
57번째 줄: 28번째 줄:
 
* http://www.math.binghamton.edu/sabalka/teaching/09Spring375/Chapter10.pdf
 
* http://www.math.binghamton.edu/sabalka/teaching/09Spring375/Chapter10.pdf
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
67번째 줄: 38번째 줄:
 
* [[데데킨트 합]]
 
* [[데데킨트 합]]
  
 
+
  
 
+
  
 
==수학용어번역==
 
==수학용어번역==
 +
* {{수학용어집|url=residue}}
 +
 +
 +
 +
 +
==사전 형태의 자료==
 +
* http://en.wikipedia.org/wiki/residue_theorem
  
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
+
[[분류:복소함수론]]
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
+
== 노트 ==
  
 
+
===말뭉치===
 +
# Applying the Cauchy residue theorem.<ref name="ref_a923acc6">[https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Complex_Variables_with_Applications_(Orloff)/09%3A_Residue_Theorem/9.05%3A_Cauchy_Residue_Theorem 9.5: Cauchy Residue Theorem]</ref>
 +
# The integral over this curve can then be computed using the residue theorem.<ref name="ref_bc937111">[https://en.wikipedia.org/wiki/Residue_theorem Residue theorem]</ref>
 +
# The new winding number allows to establish a generalized residue theorem which covers also the situation where singularities lie on the cycle.<ref name="ref_e674624a">[https://www.hindawi.com/journals/jmath/2019/6130464/ Non-Integer Valued Winding Numbers and a Generalized Residue Theorem]</ref>
 +
# This residue theorem can be used to calculate the value of improper integrals for which the standard technique with the classical residue theorem does not apply.<ref name="ref_e674624a" />
 +
# In the present article, we introduce a generalized, non-integer winding number for piecewise cycles and a general version of the residue theorem which covers all cases of singularities on .<ref name="ref_e674624a" />
 +
# Definition 2 of a generalized winding number turns out to be useful as it allows to generalize the residue theorem (see Theorem 8 below).<ref name="ref_e674624a" />
 +
# The Espil's theorem it's a short proof of the Cauchy's generalized residue theorem.<ref name="ref_7cb1076e">[https://zenodo.org/record/3359674 Espil short proof of generalized Cauchy's residue theorem]</ref>
 +
# However, I decided to use the nuclear bomb of the integration arsenal, the Cauchy residue theorem of complex analysis.<ref name="ref_f1fcf6e1">[https://ekamperi.github.io/math/2020/12/15/cauchy-residue-theorem.html Computing improper integrals with Cauchy's residue theorem]</ref>
 +
# In an upcoming topic we will formulate the Cauchy residue theorem.<ref name="ref_844a9d35">[https://www.cite-danper.com/blood-physiology-pqhvw/5c3232-cauchy-residue-theorem cauchy residue theorem]</ref>
 +
# 1 Residue theorem problems 2 2 Zero Sum theorem for residues problems 76 3 Power series problems 157 Acknowledgement.<ref name="ref_844a9d35" />
 +
# The following result, Cauchy’s residue theorem, follows from our previous work on integrals.<ref name="ref_844a9d35" />
 +
# Using residue theorem to compute an integral.<ref name="ref_844a9d35" />
 +
===소스===
 +
<references />
  
==사전 형태의 자료==
+
== 메타데이터 ==
  
* http://ko.wikipedia.org/wiki/
+
===위키데이터===
* http://en.wikipedia.org/wiki/residue_theorem
+
* ID : [https://www.wikidata.org/wiki/Q830513 Q830513]
* http://en.wikipedia.org/wiki/
+
===Spacy 패턴 목록===
* http://www.wolframalpha.com/input/?i=
+
* [{'LOWER': 'residue'}, {'LEMMA': 'theorem'}]
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
+
* [{'LOWER': 'cauchy'}, {'LOWER': 'residue'}, {'LEMMA': 'theorem'}]
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
+
* [{'LOWER': 'cauchy'}, {'LOWER': "'s"}, {'LOWER': 'residue'}, {'LEMMA': 'theorem'}]
** http://www.research.att.com/~njas/sequences/?q=
 

2021년 2월 21일 (일) 20:43 기준 최신판

개요


응용

\[\sum_{k=1}^{\infty}\frac{1}{k^{4}-a^4}=\frac{1}{2a^4}-\frac{\pi \cot (\pi a)}{4 a^3}-\frac{\pi \coth (\pi a)}{4 a^3}\] \[\sum_{n=-\infty}^{\infty}\frac{1}{n^2+n+1}=\frac{2\pi \tanh \left(\frac{\sqrt{3} \pi }{2}\right)}{\sqrt{3}}\]




역사



메모



관련된 항목들



수학용어번역

  • residue - 대한수학회 수학용어집



사전 형태의 자료

노트

말뭉치

  1. Applying the Cauchy residue theorem.[1]
  2. The integral over this curve can then be computed using the residue theorem.[2]
  3. The new winding number allows to establish a generalized residue theorem which covers also the situation where singularities lie on the cycle.[3]
  4. This residue theorem can be used to calculate the value of improper integrals for which the standard technique with the classical residue theorem does not apply.[3]
  5. In the present article, we introduce a generalized, non-integer winding number for piecewise cycles and a general version of the residue theorem which covers all cases of singularities on .[3]
  6. Definition 2 of a generalized winding number turns out to be useful as it allows to generalize the residue theorem (see Theorem 8 below).[3]
  7. The Espil's theorem it's a short proof of the Cauchy's generalized residue theorem.[4]
  8. However, I decided to use the nuclear bomb of the integration arsenal, the Cauchy residue theorem of complex analysis.[5]
  9. In an upcoming topic we will formulate the Cauchy residue theorem.[6]
  10. 1 Residue theorem problems 2 2 Zero Sum theorem for residues problems 76 3 Power series problems 157 Acknowledgement.[6]
  11. The following result, Cauchy’s residue theorem, follows from our previous work on integrals.[6]
  12. Using residue theorem to compute an integral.[6]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'residue'}, {'LEMMA': 'theorem'}]
  • [{'LOWER': 'cauchy'}, {'LOWER': 'residue'}, {'LEMMA': 'theorem'}]
  • [{'LOWER': 'cauchy'}, {'LOWER': "'s"}, {'LOWER': 'residue'}, {'LEMMA': 'theorem'}]