"유한바일군의 계산 강의노트"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
42번째 줄: 42번째 줄:
 
* Weyl : character formula,  of irr. rep'n <math>V=L(\lambda)</math> with highest weight $\lambda$
 
* Weyl : character formula,  of irr. rep'n <math>V=L(\lambda)</math> with highest weight $\lambda$
 
$$
 
$$
\begin{align}
+
\operatorname{ch}(V)=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w(\lambda+\rho)} }{e^{\rho}\prod_{\alpha\in \Delta_+}(1-e^{-\alpha})}
\operatorname{ch}(V)&=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot \lambda}}{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot 0}} \\
 
&=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w(\lambda+\rho)}}{\sum_{w\in W} (-1)^{\ell(w)}e^{w(\rho)}}\\
 
&=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w(\lambda+\rho)} }{e^{\rho}\prod_{\alpha\in \Delta_+}(1-e^{-\alpha})}
 
\end{align}  
 
 
$$
 
$$
 
  
 
===Weyl groups===
 
===Weyl groups===

2016년 7월 18일 (월) 19:15 판

개요

  • Bourbaki ordering
  • Cartan matrix
  • representation of basic objects
    • how to represent an element of the root lattice
    • how to represent an element of the weight lattice
    • how to represent an element of the Weyl group
  • change of coordinates from root basis to weight basis and vice versa
    • inverse of Cartan matrix
  • action of Weyl group on root lattice
  • action of Weyl group on weight lattice
  • how to generate all positive roots
  • how to generate elements of the Weyl group


background

simple Lie algebras

  • Lie algebra : vector space with a bilinear, alternating product

$$ [\,,\,]: \mathfrak{g}\times \mathfrak{g} \to \mathfrak{g} $$ satisfying the Jacobi identity \[[a, [b,c]]+[b,[c,a]]+[c,[a,b]]=0\]

  • $\mathfrak{sl}_2$ : $2\times 2$ matrix with trace 0 over $\mathbb{C}$ with commutator $[a,b]=ab-ba$
  • basis \(\langle e,f,h \rangle\)

\[e=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}, f=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}, h=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}\] \[[h,e]=2e, [h,f]=-2f,[e,f]=h\]

Cartan-Killing

  • classification of finite-dim'l simple Lie algebras over $\mathbb{C}$
  • key idea : use linear algebra via adjoint representation
  • decomposition of $\mathfrak{g}$ relative to a maximal abelian subalgebra $\mathfrak{h}$ -> root space decomposition
  • key structure : root systems (highly constrained combinatorial object), $A_2$ example
  • possible root system of a simple Lie algebra : $A_l,B_l,C_l,D_l,E_6,E_7,E_8,F_4,G_2$
  • this can be compactly encoded in Cartan matrix or Dynkin diagram

Cartan-Weyl

  • classification of finite-dim'l irr. rep'n
  • key concept : weight space decomposition of rep'n
  • Cartan : dominant integral highest weight - finite-dim'l irr. rep'n (weights in the fundamental chamber, $A_2$)
  • character of a representaion : generating function of dimension of each weight space

$$\operatorname{ch}(V):=\sum_{\mu \in \mathfrak{h}^{*}} (\dim{V_{\mu}})e^{\mu}$$

  • Weyl : character formula, of irr. rep'n \(V=L(\lambda)\) with highest weight $\lambda$

$$ \operatorname{ch}(V)=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w(\lambda+\rho)} }{e^{\rho}\prod_{\alpha\in \Delta_+}(1-e^{-\alpha})} $$

Weyl groups

  • simple Lie algebras gives the Weyl groups
  • for example, the Weyl group associated to $A_2$ is

$$ \left\langle r_1,r_2 \mid r_1^2=r_2^2=(r_1r_2)^{3}=1\right\rangle $$

  • there is a class of groups generated by reflections, called Coxeter groups


관련된 항목들


매스매티카 파일