"이차 수체의 데데킨트 제타함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
6번째 줄: 6번째 줄:
 
$$
 
$$
 
여기서 <math>\zeta(s)</math> 는 [[리만제타함수]]이고 $L_{d_K}(s)$는 다음과 같이 정의된 [[디리클레 L-함수]]
 
여기서 <math>\zeta(s)</math> 는 [[리만제타함수]]이고 $L_{d_K}(s)$는 다음과 같이 정의된 [[디리클레 L-함수]]
:<math>L_{d_K}(s)=\sum_{n=1}^{\infty}\frac{(d_K/n)}{n^{s}}=\prod_{p \text{:primes}} \left(1-\frac{(d_K/p)}{p^{s}}\right)^{-1}</math>
+
:<math>L_{d_K}(s)=\sum_{n=1}^{\infty}\frac{\chi(n)}{n^{s}}=\prod_{p \text{:primes}} \left(1-\frac{(\frac{d_K}{p})}{p^{s}}\right)^{-1}</math>
 +
여기서 <math>\chi \colon(\mathbb{Z}/d_K\mathbb{Z})^\times \to \mathbb C^{\times}</math> 은 각 소수 $p\in \mathbb{Z}$에 대하여 다음을 만족하는 준동형사상
 +
:<math>\chi(p)=\left(\frac{d_K}{p}\right)</math>
  
  
15번째 줄: 17번째 줄:
 
제타함수의 오일러곱
 
제타함수의 오일러곱
 
:<math>\zeta_{K}(s)=\prod_{\mathfrak{p} \text{:prime ideals}} \left(1-N(\mathfrak{p})^{-s}\right)^{-1}</math> 을 이용하자.
 
:<math>\zeta_{K}(s)=\prod_{\mathfrak{p} \text{:prime ideals}} \left(1-N(\mathfrak{p})^{-s}\right)^{-1}</math> 을 이용하자.
 
 
각 소수 $p\in \mathbb{Z}$ 에 대하여, 다음과 같은 아이디얼 $(p)\subseteq \mathcal{O}_K$의 분해를 얻는다.
 
각 소수 $p\in \mathbb{Z}$ 에 대하여, 다음과 같은 아이디얼 $(p)\subseteq \mathcal{O}_K$의 분해를 얻는다.
 
* <math>\left(\frac{d_K}{p}\right)=1</math> 이면,  <math>(p)=\mathfrak{p}_1\mathfrak{p}_2</math> , <math>\mathfrak{p}_1\neq \mathfrak{p}_2</math> 이고 <math>N(\mathfrak{p}_1)=N(\mathfrak{p}_2)=p</math>
 
* <math>\left(\frac{d_K}{p}\right)=1</math> 이면,  <math>(p)=\mathfrak{p}_1\mathfrak{p}_2</math> , <math>\mathfrak{p}_1\neq \mathfrak{p}_2</math> 이고 <math>N(\mathfrak{p}_1)=N(\mathfrak{p}_2)=p</math>

2014년 1월 11일 (토) 19:29 판

개요

$$ \zeta_{K}(s)=\zeta(s)L_{d_K}(s) $$ 여기서 \(\zeta(s)\) 는 리만제타함수이고 $L_{d_K}(s)$는 다음과 같이 정의된 디리클레 L-함수 \[L_{d_K}(s)=\sum_{n=1}^{\infty}\frac{\chi(n)}{n^{s}}=\prod_{p \text{:primes}} \left(1-\frac{(\frac{d_K}{p})}{p^{s}}\right)^{-1}\] 여기서 \(\chi \colon(\mathbb{Z}/d_K\mathbb{Z})^\times \to \mathbb C^{\times}\) 은 각 소수 $p\in \mathbb{Z}$에 대하여 다음을 만족하는 준동형사상 \[\chi(p)=\left(\frac{d_K}{p}\right)\]


제타함수의 분해

정리

\[\zeta_{K}(s)=\zeta(s)L_{d_K}(s)\]

증명

제타함수의 오일러곱 \[\zeta_{K}(s)=\prod_{\mathfrak{p} \text{:prime ideals}} \left(1-N(\mathfrak{p})^{-s}\right)^{-1}\] 을 이용하자. 각 소수 $p\in \mathbb{Z}$ 에 대하여, 다음과 같은 아이디얼 $(p)\subseteq \mathcal{O}_K$의 분해를 얻는다.

  • \(\left(\frac{d_K}{p}\right)=1\) 이면,  \((p)=\mathfrak{p}_1\mathfrak{p}_2\) , \(\mathfrak{p}_1\neq \mathfrak{p}_2\) 이고 \(N(\mathfrak{p}_1)=N(\mathfrak{p}_2)=p\)
  • \(\left(\frac{d_K}{p}\right)=-1\) 이면,  \((p)=\mathfrak{p}\) 이고 \(N(\mathfrak{p})=p^2\)
  • \(\left(\frac{d_K}{p}\right)=0\) 이면,  \((p)=\mathfrak{p}^2\) 이고 \(N(\mathfrak{p})=p\)

따라서

\[\zeta_{K}(s)=\prod_{\mathfrak{p} \text{:prime ideals}} \left(1-N(\mathfrak{p})^{-s}\right)^{-1}=\prod_{p \text{:primes}} \left(1-\frac{1}{p^{s}}\right)^{-1}\prod_{p \text{:primes}} \left(1-\frac{(d_K/p)}{p^{s}}\right)^{-1}.\]

이로부터 \(\zeta_{K}(s)=\zeta(s)L_{d_K}(s)\) 를 얻는다. ■


  • 일반적으로 \({d_K}=d_1d_2\)에 대응되는 genus character \(\chi \colon I_K \to \mathbb C^{*}\)  (\(\chi \colon C_K \to \mathbb C^{*}\)) 를 정의할 수 있고, 두 디리클레 L-함수의 곱으로 표현가능함 (아래 정리 참조)
  • 위의 경우는 \({d_K}=1\cdot d_K\) 에 해당
정리

\(\chi \colon I_K \to \mathbb C^{*}\)  (\(\chi \colon C_K \to \mathbb C^{*}\))에 대하여

\(L(\chi,s) =L_{d_1}(s)L_{d_2}(s)\) \[L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-\chi(\mathfrak{p})N(\mathfrak{p})^{-s}}\]

 


관련된 항목들