자코비의 네 제곱수 정리

수학노트
둘러보기로 가기 검색하러 가기

개요

  • 라그랑지의 네 제곱수 정리는 모든 자연수는 네 개의 제곱수의 합으로 표현가능함을 말해준다
  • 자코비는 자코비 세타함수 를 이용하여 주어진 자연수가  네 개의 제곱수의 합으로 얼마나 많은 방법으로 표현가능한지의 문제를 해결
  • 모듈라 형식의 이론으로 설명할 수 있다 

 

세타함수와 네 제곱수의 합

  • 네 제곱수의 합으로 표현하는 방법의 수에 대한 생성함수로서 세타함수를 사용
  • 자코비 세타함수

\[\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau},\quad q=e^{2\pi i \tau}\]

  • \(x=e^{\pi i \tau}\) 로 두면,\[\theta(x)=\sum_{n=-\infty}^\infty x^{n^2}=1+2\sum_{n=1}^\infty x^{n^2}\]
  • 세타함수의 네 제곱을 취하면 자연수를 네 제곱으로 표현하는 방법에 대한 생성함수를 얻는다

\[ \begin{aligned} \theta^4(x)& =(\sum_{n=-\infty}^\infty x^{n^2})^4=(1+2\sum_{n=1}^\infty x^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)x^n \\ & =1 + 8 x + 24 x^2 + 32 x^3 + 24 x^4 + 48 x^5 + 96 x^6 + 64 x^7 + 24 x^8+\cdots \end{aligned} \] 여기서 \(r_4(n)\) 는 \(x_1^2+x_2^2+x_3^2+x_4^2=n\)의 정수해 \((x_1,x_2,x_3,x_4)\)의 개수, 즉 자연수 \(n\)을 네 정수의 제곱의 합으로 쓰는 방법의 수

정리

\[r_4(n)=8\sum_{m|n,4\nmid m}m\]  

 

  • \(r_4(1)=8\)\[(\pm1)^2+0^2+0^2+0^2=1\]이므로 \[2\times {4\choose 1}=8\]
  • \(r_4(2)=24\)\[(\pm1)^2+(\pm1)^2+0^2+0^2=2\]
    ... 으로부터\[4\times {4\choose 2}=24\]
  • \(r_4(3)=32\)\[(\pm1)^2+(\pm1)^2+(\pm1)^2+0^2=3\]
     
    ... 으로부터\[8\times {4\choose 1}=32\]

 

  • \(r_4(4)=24\)\[(\pm1)^2+(\pm1)^2+(\pm1)^2+(\pm1)^2=(\pm2)^2+0^2+0^2+0^2=4\]
    ... 으로부터\[16+2 \times {4\choose 1}=24\]


모듈라 형식을 이용한 증명

아래에서 \(q=e^{2\pi i \tau}\), \(x=e^{\pi i \tau}\) 이다. $r_4(n)$의 생성함수를 세타함수의 거듭제곱으로 나타내자. \[\theta^4(x)=(\sum_{n=-\infty}^\infty x^{n^2})^4=(1+2\sum_{n=1}^\infty x^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)x^n\]  세타함수의 데데킨트 에타함수 표현을 이용하자. (자코비 세타함수의 해당부분 참조) \[\theta(\tau)=\frac{\eta(\tau)^5}{\eta(2\tau)^2\eta(\frac{\tau}{2})^2}\] \[\theta^4(\tau)=\frac{\eta(\tau)^{20}}{\eta(2\tau)^{8}\eta(\frac{\tau}{2})^{8}}\] \(\theta^4(\tau)\)는 군 \(\Gamma(2)\)에 대한 weight 2인 모듈라 형식(modular forms)이다.  한편 \(\frac{\eta(2\tau)^8}{\eta(\frac{\tau}{2})^8}\)는 \(\Gamma(2)\)에 대한 모듈라 함수이다.  적당한 상수 \(c\)에 대하여 다음 등식이 성립한다.  \[\frac{d}{d\tau}\log \frac{\eta(2\tau)}{\eta(\frac{\tau}{2})}=c\frac{\eta(\tau)^{20}}{\eta(2\tau)^{8}\eta(\frac{\tau}{2})^{8}}=c\theta^4(\tau)\] 이제 \[\frac{\eta(2\tau)^8}{\eta(\frac{\tau}{2})^8}=x\prod_{n=1}^{\infty}\frac{(1-x^{4n})^8}{(1-x^{n})^8}\]에 미분연산자  \(x\frac{d}{dx}\log\)(즉 로그를 취한뒤, 미분 후, x 곱하기) 을 취하면,  \[1+8\sum_{n=1}^{\infty}\frac{nx^n}{1-x^n}-8\sum_{n=1}^{\infty}\frac{4nx^{4n}}{1-x^{4n}}=1+8\sum_{n=1}^{\infty}(\sum_{d|n,4\nmid d}d)q^n\]를 얻는다.  따라서 \[r_4(n)=8\sum_{d|n,4\nmid d}d.\]■

타원함수론을 이용한 증명

\[\theta^4(q)=(\sum_{n=-\infty}^\infty q^{n^2})^4=(1+2\sum_{n=1}^\infty q^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)q^n\] \[A(q)=\sum_{m=1}^{\infty}\frac{mq^m}{1-q^m}=\sum_{m=1}^{\infty}{mq^m}(1+q^m+q^{2m}+\cdots)=\sum_{n=1}^{\infty}\sigma(n)q^n\] 여기서 \(\sigma(n)\) 에 대해서는 자연수의 약수의 합 항목 참조. \[B(q)=\sum_{m=1}^{\infty}\frac{(1+(-1)^m)}{2}\cdot \frac{2mq^{2m}}{1-q^{2m}}=\sum_{m=1}^{\infty}\frac{(1+(-1)^m)}{2}\cdot{2mq^{2m}}(1+q^{2m}+q^{4m}+\cdots)=\sum_{m=1,n=1}^{\infty}m(1+(-1)^m){q^{2mn}}= \sum_{n=1}^{\infty}(\sum_{d|n,4|d}d)q^n\] 이제 \(\theta^4(q)=1+8A(q)-8B(q)\) 를 증명하면 된다. 

 

역사

 

 

메모

자코비 세타함수의 삼중곱 정리로부터, 다음을 얻는다. \(\theta(\tau)=\sum_{n=-\infty}^\infty x^{n^2}=\prod_{m=1}^\infty \left( 1 - x^{2m}\right) \left( 1 + x^{2m-1}\right) \left( 1 + x^{2m-1}\right)\)

여기서 \(x=e^{\pi i \tau}\).

 

관련된 항목들


계산 리소스

 

관련논문