자코비의 네 제곱수 정리

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

  • 라그랑지의 네 제곱수 정리는 모든 자연수는 네 개의 제곱수의 합으로 표현가능함을 말해준다
  • 자코비는 자코비 세타함수 를 이용하여 주어진 자연수가 네 개의 제곱수의 합으로 얼마나 많은 방법으로 표현가능한지의 문제를 해결
  • 모듈라 형식의 이론으로 설명할 수 있다


세타함수와 네 제곱수의 합

  • 네 제곱수의 합으로 표현하는 방법의 수에 대한 생성함수로서 세타함수를 사용
  • 자코비 세타함수

\[\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau},\quad q=e^{2\pi i \tau}\]

  • \(x=e^{\pi i \tau}\) 로 두면,\[\theta(x)=\sum_{n=-\infty}^\infty x^{n^2}=1+2\sum_{n=1}^\infty x^{n^2}\]
  • 세타함수의 네 제곱을 취하면 자연수를 네 제곱으로 표현하는 방법에 대한 생성함수를 얻는다

\[ \begin{aligned} \theta^4(x)& =(\sum_{n=-\infty}^\infty x^{n^2})^4=(1+2\sum_{n=1}^\infty x^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)x^n \\ & =1 + 8 x + 24 x^2 + 32 x^3 + 24 x^4 + 48 x^5 + 96 x^6 + 64 x^7 + 24 x^8+\cdots \end{aligned} \] 여기서 \(r_4(n)\) 는 \(x_1^2+x_2^2+x_3^2+x_4^2=n\)의 정수해 \((x_1,x_2,x_3,x_4)\)의 개수, 즉 자연수 \(n\)을 네 정수의 제곱의 합으로 쓰는 방법의 수

정리

\[r_4(n)=8\sum_{m|n,4\nmid m}m\]



  • \(r_4(1)=8\)\[(\pm1)^2+0^2+0^2+0^2=1\]이므로 \[2\times {4\choose 1}=8\]
  • \(r_4(2)=24\)\[(\pm1)^2+(\pm1)^2+0^2+0^2=2\] ... 으로부터\[4\times {4\choose 2}=24\]
  • \(r_4(3)=32\)\[(\pm1)^2+(\pm1)^2+(\pm1)^2+0^2=3\] ... 으로부터\[8\times {4\choose 1}=32\]


  • \(r_4(4)=24\)\[(\pm1)^2+(\pm1)^2+(\pm1)^2+(\pm1)^2=(\pm2)^2+0^2+0^2+0^2=4\] ... 으로부터\[16+2 \times {4\choose 1}=24\]


모듈라 형식을 이용한 증명

아래에서 \(q=e^{2\pi i \tau}\), \(x=e^{\pi i \tau}\) 이다. \(r_4(n)\)의 생성함수를 세타함수의 거듭제곱으로 나타내자. \[\theta^4(x)=(\sum_{n=-\infty}^\infty x^{n^2})^4=(1+2\sum_{n=1}^\infty x^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)x^n\] 세타함수의 데데킨트 에타함수 표현을 이용하자. (자코비 세타함수의 해당부분 참조) \[\theta(\tau)=\frac{\eta(\tau)^5}{\eta(2\tau)^2\eta(\frac{\tau}{2})^2}\] \[\theta^4(\tau)=\frac{\eta(\tau)^{20}}{\eta(2\tau)^{8}\eta(\frac{\tau}{2})^{8}}\] \(\theta^4(\tau)\)는 군 \(\Gamma(2)\)에 대한 weight 2인 모듈라 형식(modular forms)이다. 한편 \(\frac{\eta(2\tau)^8}{\eta(\frac{\tau}{2})^8}\)는 \(\Gamma(2)\)에 대한 모듈라 함수이다. 적당한 상수 \(c\)에 대하여 다음 등식이 성립한다. \[\frac{d}{d\tau}\log \frac{\eta(2\tau)}{\eta(\frac{\tau}{2})}=c\frac{\eta(\tau)^{20}}{\eta(2\tau)^{8}\eta(\frac{\tau}{2})^{8}}=c\theta^4(\tau)\] 이제 \[\frac{\eta(2\tau)^8}{\eta(\frac{\tau}{2})^8}=x\prod_{n=1}^{\infty}\frac{(1-x^{4n})^8}{(1-x^{n})^8}\]에 미분연산자 \(x\frac{d}{dx}\log\)(즉 로그를 취한뒤, 미분 후, x 곱하기) 을 취하면, \[1+8\sum_{n=1}^{\infty}\frac{nx^n}{1-x^n}-8\sum_{n=1}^{\infty}\frac{4nx^{4n}}{1-x^{4n}}=1+8\sum_{n=1}^{\infty}(\sum_{d|n,4\nmid d}d)q^n\]를 얻는다. 따라서 \[r_4(n)=8\sum_{d|n,4\nmid d}d.\]■

타원함수론을 이용한 증명

\[\theta^4(q)=(\sum_{n=-\infty}^\infty q^{n^2})^4=(1+2\sum_{n=1}^\infty q^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)q^n\] \[A(q)=\sum_{m=1}^{\infty}\frac{mq^m}{1-q^m}=\sum_{m=1}^{\infty}{mq^m}(1+q^m+q^{2m}+\cdots)=\sum_{n=1}^{\infty}\sigma(n)q^n\] 여기서 \(\sigma(n)\) 에 대해서는 자연수의 약수의 합 항목 참조. \[B(q)=\sum_{m=1}^{\infty}\frac{(1+(-1)^m)}{2}\cdot \frac{2mq^{2m}}{1-q^{2m}}=\sum_{m=1}^{\infty}\frac{(1+(-1)^m)}{2}\cdot{2mq^{2m}}(1+q^{2m}+q^{4m}+\cdots)=\sum_{m=1,n=1}^{\infty}m(1+(-1)^m){q^{2mn}}= \sum_{n=1}^{\infty}(\sum_{d|n,4|d}d)q^n\] 이제 \(\theta^4(q)=1+8A(q)-8B(q)\) 를 증명하면 된다.


역사



메모

자코비 세타함수의 삼중곱 정리로부터, 다음을 얻는다. \(\theta(\tau)=\sum_{n=-\infty}^\infty x^{n^2}=\prod_{m=1}^\infty \left( 1 - x^{2m}\right) \left( 1 + x^{2m-1}\right) \left( 1 + x^{2m-1}\right)\)

여기서 \(x=e^{\pi i \tau}\).


관련된 항목들


계산 리소스


관련논문