"자코비 세타함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/6151647">세타함수 이론</a>페이지로 이동하였습니다.)
 
(사용자 3명의 중간 판 30개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
 +
* <math>q=e^{2\pi i \tau}</math>, <math>x=e^{\pi i \tau}</math>라 두자
 +
*  세타함수의 정의 (spectral decomposition of heat kernel)
 +
:<math>\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}=\sum_{n=-\infty}^\infty x^{n^2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}</math>
 +
:<math>\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}</math>
 +
:<math>\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}</math>
  
* [[자코비 세타함수]]
+
* 자코비는 이를 통하여 [[타원함수]]론을 전개
 
+
* 응용으로 [[자코비의 네 제곱수 정리]], [[퐁슬레의 정리(Poncelet's porism)|퐁슬레의 정리]] 등의 증명에 사용됨
 
 
 
 
 
 
 
 
<h5>개요</h5>
 
 
 
*  세타함수의 정의 (spectral decomposition of heat kernel)<br><math>\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}=\sum_{n=-\infty}^\infty x^{n^2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}</math>, <math>q=e^{2\pi i \tau}</math>, <math>x=e^{\pi i \tau}</math><br>
 
 
 
<math>\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}</math>
 
 
 
<math>\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}</math>
 
 
 
* 자코비는 이를 통하여 [[타원함수]]론을 전개
 
* 응용으로 [[자코비의 네 제곱수 정리]], [[퐁슬레의 정리(Poncelet's porism)|퐁슬레의 정리]] 등의 증명에 사용됨
 
 
* [[모듈라 형식(modular forms)]]의 예
 
* [[모듈라 형식(modular forms)]]의 예
* [[제1종타원적분 K (complete elliptic integral of the first kind)]], [[타원적분의 singular value k]]와 밀접한 관계를 가짐<br><math>K(k(\tau)) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}} = \frac{\pi}{2}\theta_3^2(\tau)</math><br><math>k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}</math><br>
+
* [[제1종타원적분 K (complete elliptic integral of the first kind)]], [[타원적분의 singular value k]]와 밀접한 관계를 가짐:<math>K(k(\tau)) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}} = \frac{\pi}{2}\theta_3^2(\tau)</math>:<math>k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}</math>
 
 
 
 
 
 
 
 
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">많이 사용되는 또다른 정의</h5>
+
  
* 전통적인 세타함수<br><math>\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}</math><br>
+
   
*  현대의 수학문헌에서는 다음과 같은 함수도 같은 이름으로 자주 사용됨<br><math>\Theta(\tau)=\sum_{n=-\infty}^\infty q^{n^2}= \sum_{n=-\infty}^\infty e^{2\pi i n^2\tau}</math>, <math>q=e^{2\pi i \tau}</math><br>
 
  
* <math>\Theta(\tau)</math> 는 <math>\Gamma_0(4)</math>에 대한 모듈라 형식이 됨<br><math>\Gamma_0(4) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} {*} & {*} \\ 0 & {*} \end{pmatrix} \pmod{4} \right\}</math><br>
+
  
 
+
==많이 사용되는 또다른 정의==
  
 
+
*  전통적인 세타함수:<math>\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}</math>
 +
*  현대의 수학문헌에서는 다음과 같은 함수도 같은 이름으로 자주 사용됨:<math>\Theta(\tau)=\sum_{n=-\infty}^\infty q^{n^2}= \sum_{n=-\infty}^\infty e^{2\pi i n^2\tau}\,\quad (q=e^{2\pi i \tau})</math>
  
 
+
* <math>\Theta(\tau)</math> 는 <math>\Gamma_0(4)</math>에 대한 모듈라 형식이 됨:<math>\Gamma_0(4) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} {*} & {*} \\ 0 & {*} \end{pmatrix} \pmod{4} \right\}</math>
  
<h5>여러가지 공식들</h5>
 
  
<math>\theta_2^4(q)+\theta_4^4(q)=\theta_3^4(q)</math>
 
  
<math>\theta_3^2(q^2)+\theta_2^2(q^2)=\theta_3^2(q)</math>
+
==여러가지 공식들==
 +
* <math>\theta_2^4(q)+\theta_4^4(q)=\theta_3^4(q)</math>
 +
* <math>\theta_3^2(q^2)+\theta_2^2(q^2)=\theta_3^2(q)</math>
 +
* <math>\theta_3^2(q^2)-\theta_2^2(q^2)=\theta_3^2(q)</math>
  
<math>\theta_3^2(q^2)-\theta_2^2(q^2)=\theta_3^2(q)</math>
 
  
 
+
  
 
+
==세타함수의 모듈라 성질==
  
<h5>세타함수의 모듈라 성질</h5>
+
;정리
 +
세타함수는 다음의 변환 성질을 만족한다
 +
:<math>\theta(-\frac{1}{\tau})=\sqrt{\frac{\tau}{i}} \theta({\tau})=\sqrt{-i\tau}\theta({\tau})</math> 여기서 <math>-\frac{\pi}{4}<\arg \sqrt{-i\tau}<\frac{\pi}{4}</math> 이 되도록 선택
  
*  (정리)<br><math>\theta(-\frac{1}{\tau})=\sqrt{\frac{\tau}{i}} \theta({\tau})=\sqrt{-i\tau}\theta({\tau})</math><br> 여기서 <math>-\frac{\pi}{4}<\arg \sqrt{-i\tau}<\frac{\pi}{4}</math> 이 되도록 선택<br>
 
  
 
+
;증명
 
 
(증명)
 
  
 
[[포아송의 덧셈 공식]]을 사용한다.
 
[[포아송의 덧셈 공식]]을 사용한다.
 +
:<math>\sum_{n\in \mathbb Z}f(n)=\sum_{n\in \mathbb Z}\hat{f}(n)</math>
  
<math>\sum_{n\in \mathbb Z}f(n)=\sum_{n\in \mathbb Z}\hat{f}(n)</math>
+
<math>f(x)=e^{\pi i x^2\tau}</math>의 [[푸리에 변환]]은 다음과 같이 주어진다.
 +
:<math>\hat{f}(\xi)=\sqrt{\frac{i}{\tau}}e^{-\pi i\frac{\xi^2}{\tau}}</math>
 +
따라서
 +
:<math>\theta(\tau)= \sum_{n\in \mathbb Z} \exp(\pi i n^2\tau)=\sum_{n\in \mathbb Z}f(n)=\sum_{n\in \mathbb Z}\hat{f}(n)=\sqrt{\frac{i}{\tau}}\sum_{n\in \mathbb Z}e^{-\pi i n^2 \frac{1}{\tau}}=\sqrt{\frac{i}{\tau}}\theta(-\frac{1}{\tau})</math>
  
<math>f(x)=e^{\pi i x^2\tau</math>의 [[푸리에 변환]]은 다음과 같이 주어진다.
 
  
<math>\hat{f}(\xi)=\sqrt{\frac{i}{\tau}}e^{-\pi i\frac{\xi^2}{\tau}</math>
+
* <math>\tau=iy, y>0</math> 으로 쓰면, 다음과 같이 표현된다 :<math>\theta(\frac{i}{y})=\sqrt{y} \theta({iy})</math>
 +
* <math>\Gamma(2)</math>에 대한 모듈라 형식이 됨:<math>\Gamma(2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{2} \right\}</math>
  
<math>\theta(\tau)= \sum_{\in \mathbb Z} \exp(\pi i n^2\tau)=\sum_{n\in \mathbb Z}f(n)=\sum_{n\in \mathbb Z}\hat{f}(n)=\sqrt{\frac{i}{\tau}}\sum_{n\in \mathbb Z}e^{-\pi i n^2 \frac{1}{\tau}}=\sqrt{\frac{i}{\tau}}\theta(-\frac{1}{\tau})</math>  ■
+
===더 일반적인 모듈라 변환===
 +
더 일반적으로, <math>ad-bc=1</math>, <math>ab\equiv 0\pmod 2</math>, <math>cd\equiv 0\pmod 2</math>, <math>c>0</math>인 정수 a,b,c,d에 대하여 다음이 성립한다
 +
:<math>\theta \left( \frac {a\tau+b} {c\tau+d}\right) =\epsilon(c,d) \sqrt{-i\left(c\tau+d\right)}\theta(\tau) \label{mod}</math>
 +
여기서 <math>-\frac{\pi}{4}<\arg \sqrt{-i(c\tau+d)}<\frac{\pi}{4}</math> 이 되도록 선택하며 (<math>\Re\left(-i(c\tau+d)\right) >0</math>이다),
 +
:<math>\epsilon(c,d)=\frac{\sqrt{c}}{S(-d,c)}</math>
 +
이고 <math>S(p,q)=\sum_{r=0}^{q-1} e^{\pi i pr^2/q}</math>는 [[가우스 합]].
  
 
+
==cusp에서의 행동과 가우스합==
 +
===0 근방에서의 행동===
 +
* <math>y>0</math>가 매우 작을 때,
 +
:<math>\theta(iy)\sim \frac{1}{\sqrt{y}}</math>
 +
(증명) :<math>\theta(\frac{i}{y})=\sqrt{y} \theta({iy})</math> ■
  
 
+
===일반적인 유리수(cusp)에서의 행동===
 +
* <math>pq</math>가 짝수인 자연수 p,q에 대하여 <math>y>0</math>가 매우 작을 때,
 +
:<math>\theta(\frac{p}{q}+iy)\sim \frac{1}{q}S(p,q)\frac{1}{\sqrt{y}}</math> 여기서 <math>S(p,q)=\sum_{r=0}^{q-1} e^{\pi i pr^2/q}</math>는 [[가우스 합]]. 다음과 같이 쓸 수 있다
 +
:<math>\lim_{\epsilon \to 0}\sqrt{\epsilon} \theta(\frac{p}{q}+i\epsilon)=\frac{1}{q}S(p,q)</math>:<math>\lim_{\epsilon \to 0}\sqrt{\epsilon} \theta(-\frac{p}{q}+i\epsilon)=\frac{1}{q}\overline{S(p,q)}</math>
 +
* 이 정리에 세타함수의 모듈라 성질을 적용하면, 가우스합의 상호법칙을 얻는다
 +
:<math>
 +
\sqrt{q}\overline{S(q,p)}=e^{-\pi i/4}\sqrt{p}S(p,q)
 +
</math>
 +
* [[가우스 합의 상호법칙(Landsberg-Schaar relation)]] 항목 참조
  
* <math>\tau=iy, y>0</math> 으로 쓰면, 다음과 같이 표현된다<br><math>\theta(\frac{i}{y})=\sqrt{y} \theta({iy)</math><br>
 
* <math>\Gamma(2)</math>에 대한 모듈라 형식이 됨<br><math>\Gamma(2) = \left\{  \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix}  \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{2} \right\}</math><br>
 
  
 
+
===증명1===
 +
<math>\tau =\frac{p}{q}+i y</math>와 다음의 행렬
 +
:<math>
 +
\left(
 +
\begin{array}{cc}
 +
a & b \\
 +
q & -p \\
 +
\end{array}
 +
\right)
 +
</math>
 +
에 모듈라 성질 \ref{mod}를 적용하면, 다음을 얻는다
 +
:<math>
 +
\theta \left(\frac{a}{q}+\frac{i}{q^2 y}\right)= \frac{\sqrt{q}}{S(p,q)} \sqrt{q y}\theta \left(\frac{p}{q}+i y\right)=\frac{q \sqrt{y}}{S(p,q)}\theta \left(\frac{p}{q}+i y\right)
 +
</math>
 +
  
 
 
  
<h5 style="margin: 0px; line-height: 2em;">가우스합과의 관계</h5>
+
===증명2===
 +
다음을 생각하자
 +
:<math>\theta(\frac{p}{q}+i\epsilon)=\sum_{n=-\infty}^\infty e^{\pi i n^2(\frac{p}{q}+i\epsilon)}= \left(\sum_{r=0}^{q-1}e^{\pi i p r^2/q}\right)\left(\sum_{l=-\infty}^\infty e^{-\pi \epsilon (ql+r)^2}\right)</math>
 +
여기서 <math>n=ql+r</math>로 두었음.
  
* <math>(p,q)=1</math>인 양수 p,q를 생각하자.<br>
+
따라서,  
*  유리수근처(cusp)에서의 세타함수<br><math>y>0</math>가 매우 작을 때,<br><math>\theta(\frac{p}{q}+iy)\sim \frac{1}{q}S(p,q)\frac{1}{\sqrt{y}}</math><br> 여기서 <math>S(p,q)</math>는 <math>S(p,q)=\sum_{r=0}^{q-1} e^{\pi i pr^2/q}</math><br>
+
:<math>\sqrt{\epsilon} \theta(\frac{p}{q}+i\epsilon)=\left(\frac{1}{q} \sum_{r=0}^{q-1}e^{i\pi p r^2/q}\right)\left(\sum_{l=-\infty}^\infty e^{-\pi \epsilon (ql+r)^2} (\sqrt{\epsilon}q)\right).</math>
  
 
+
여기서 <math>\Delta{x}=\sqrt{\epsilon}q</math>로 두면,
 +
:<math>\sum_{l=-\infty}^\infty e^{-\pi \epsilon (ql+r)^2} ( \sqrt{\epsilon}q)=\sum_{x\in\sqrt{\epsilon}(q\mathbb{Z}+r)}e^{-\pi x^2}\Delta x.\label{thg}</math>
 +
\ref{thg}에서 <math>\epsilon \to 0</math>을 취하면 리만합은 [[1차원 가우시안 적분 ]]으로 수렴하게 된다. 따라서
 +
:<math>\lim_{\epsilon \to 0}\sqrt{\epsilon} \theta(\frac{p}{q}+i\epsilon)=\left(\frac{1}{q} \sum_{r=0}^{q-1}e^{i\pi p r^2/q}\right)(\int_{-\infty}^\infty e^{-\pi x^2}\,dx)=\frac{1}{q}S(p,q)</math> ■
  
*  (정리)<br> 자연수p,q에 대하여 <math>pq</math>가 짝수라고 하자. 다음이 성립한다.<br><math>\lim_{\epsilon \to 0}\sqrt{\epsilon} \theta(\frac{p}{q}+i\epsilon)=\frac{1}{q}S(p,q)</math><br><math>\lim_{\epsilon \to 0}\sqrt{\epsilon} \theta(-\frac{p}{q}+i\epsilon)=\frac{1}{q}\overline{S(p,q)}</math><br>
+
==세타함수의 삼중곱 정리(triple product)==
  
(증명)
+
* [[자코비 삼중곱(Jacobi triple product)|세타함수의 삼중곱(triple product)]]
  
<math>\theta(\frac{p}{q}+i\epsilon)=\sum_{n=-\infty}^\infty e^{\pi i n^2(\frac{p}{q}+i\epsilon)}= \sum_{r=0}^{q-1}e^{\pi i p r^2/q} \sum_{l=-\infty}^\infty e^{-\pi \epsilon (ql+r)^2}</math>
+
  
위에서 <math>n=ql+r</math>로 두었음.
+
  
따라서, 
+
==데데킨트 에타함수와의 관계==
 
 
<math>\sqrt{\epsilon} \theta(\frac{p}{q}+i\epsilon)=\frac{1}{q} \sum_{r=0}^{q-1}e^{i\pi p r^2/q} \sum_{l=-\infty}^\infty e^{-\pi \epsilon (ql+r)^2} (\sqrt{\epsilon}q)</math>
 
 
 
여기서 <math>\Delta{x}=\sqrt{\epsilon}q</math>로 두면, 
 
 
 
<math>\sum_{l=-\infty}^\infty e^{-\pi \epsilon (ql+r)^2} ( \sqrt{\epsilon}q)=\sum_{x\in\sqrt{\epsilon}(q\mathbb{Z}+r)}e^{-\pi x^2}\Delta x</math>
 
 
 
<math>\epsilon \to 0</math> 이면 위의 리만합은 적분으로 수렴하게 된다. 따라서
 
 
 
<math>\lim_{\epsilon \to 0}\sqrt{\epsilon} \theta(\frac{p}{q}+i\epsilon)=\frac{1}{q} \sum_{r=0}^{q-1}e^{i\pi p r^2/q} \int_{-\infty}^\infty e^{-x^2}\,dx=\frac{1}{q}S(p,q)</math> ■
 
 
 
*  이 정리에 세타함수의 모듈라 성질을 적용하면, 다음을 얻는다<br>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">가우스합의 상호법칙</h5>
 
 
 
(정리) (가우스합의 상호법칙)
 
 
 
자연수p,q에 대하여 <math>pq</math>가 짝수라고 하자. 다음이 성립한다.
 
 
 
<math>\sqrt{q}\overline{S(q,p)}=e^{-\pi i/4}\sqrt{p}S(p,q)</math>
 
 
 
 
 
 
 
(증명)
 
 
 
세타함수의 모듈라 성질,
 
 
 
<math>\theta(-\frac{q}{p}+i\epsilon\frac{q^2}{p^2}+O(\epsilon^2))=\sqrt{\epsilon+\frac{p}{qi}}\theta(\frac{p}{q}+i\epsilon)</math> 를 얻을 수 있다.
 
 
 
양변에 <math>\sqrt{\epsilon}</math>을 곱하여, 극한을 구하면, 
 
 
 
좌변은
 
 
 
<math>\lim_{\epsilon \to 0}\sqrt{\epsilon} \theta(-\frac{q}{p}+i\epsilon\frac{q^2}{p^2}+O(\epsilon^2))=\frac{p}{q}\cdot\frac{1}{p}\cdot\overline{S(q,p)}=\frac{1}{q}\overline{S(q,p)}</math>
 
 
 
우변은
 
 
 
<math>\lim_{\epsilon \to 0}\sqrt{\epsilon}\sqrt{\epsilon+\frac{p}{qi}}\theta(\frac{p}{q}+i\epsilon)=e^{-\pi i/4}\sqrt{\frac{p}{q}}\cdot \frac{1}{q}S(p,q)</math>
 
 
 
이 된다. 따라서 다음을 얻는다.
 
 
 
<math>\sqrt{q}\overline{S(q,p)}=e^{-\pi i/4}\sqrt{p}S(p,q)</math>  ■
 
 
 
* [[가우스 합|가우스합]]<br>
 
 
 
 
 
 
 
 
 
 
 
<h5>세타함수의 삼중곱 정리(triple product)</h5>
 
 
 
<math>\sum_{n=-\infty}^\infty  z^{n}q^{n^2}= \prod_{m=1}^\infty  \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)</math>
 
 
 
<math>z=1</math> 인 경우
 
 
 
<math>\sum_{n=-\infty}^\infty q^{n^2}= \prod_{m=1}^\infty  \left( 1 - q^{2m}\right) \left( 1 + q^{2m-1}\right)^2</math>
 
 
 
 
 
 
 
(증명)
 
 
 
[[q-초기하급수(q-hypergeometric series) (통합됨)|q-초기하급수(q-hypergeometric series)]]
 
 
 
<math>\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math>
 
 
 
<math>\prod_{n=0}^{\infty}\frac{1}{1+zq^n}=\sum_{n\geq 0}\frac{(-1)^n}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math>
 
 
 
를 활용
 
 
 
 
 
 
 
<math>\prod_{m=0}^\infty  \left( 1 + zq^{2m+1}\right)=\sum_{n\geq 0}\frac{q^nz^n}{(1-q^2)(1-q^4)\cdots(1-q^{2n})}</math>
 
 
 
'''[Andrews65] '''참조 ■
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">데데킨트 에타함수와의 관계</h5>
 
  
 
<math>\theta(\tau)=\frac{\eta(\tau)^5}{\eta(2\tau)^2\eta(\frac{\tau}{2})^2}</math>
 
<math>\theta(\tau)=\frac{\eta(\tau)^5}{\eta(2\tau)^2\eta(\frac{\tau}{2})^2}</math>
185번째 줄: 125번째 줄:
 
<math>\theta(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}=\sum_{n=-\infty}^\infty x^{n^2}=\prod_{m=1}^\infty \left( 1 - x^{2m}\right) \left( 1 + x^{2m-1}\right) \left( 1 + x^{2m-1}\right)</math>
 
<math>\theta(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}=\sum_{n=-\infty}^\infty x^{n^2}=\prod_{m=1}^\infty \left( 1 - x^{2m}\right) \left( 1 + x^{2m-1}\right) \left( 1 + x^{2m-1}\right)</math>
  
<math>q=e^{2\pi i \tau}</math>, <math>x=e^{\pi i \tau}</math>
+
<math>q=e^{2\pi i \tau}</math>, <math>x=e^{\pi i \tau}</math>
  
* [[데데킨트 에타함수]] 참조<br>
+
* [[데데킨트 에타함수]] 참조
  
 
+
  
 
+
  
<h5>singular value k와의 관계</h5>
+
==singular value k와의 관계==
  
 
<math>k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}</math>
 
<math>k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}</math>
199번째 줄: 139번째 줄:
 
<math>k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}</math>
 
<math>k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}</math>
  
* [[타원적분의 singular value k]]<br>
+
* [[타원적분의 singular value k]]
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">세타함수와 AGM iteration</h5>
+
==세타함수와 AGM iteration==
  
 
<math>\frac{\theta_3^2(q)+\theta_4^2(q)}{2}=\theta_3^2(q^2)</math>
 
<math>\frac{\theta_3^2(q)+\theta_4^2(q)}{2}=\theta_3^2(q^2)</math>
211번째 줄: 151번째 줄:
 
<math>\sqrt{\theta_3^2(q)\theta_4^2(q)}=\theta_4^2(q^2)</math>
 
<math>\sqrt{\theta_3^2(q)\theta_4^2(q)}=\theta_4^2(q^2)</math>
  
따라서 <math>a_n=\theta_3^2(q^{2^n}),b_n=\theta_4^2(q^{2^n})</math> 라 하면, <math>a_n, b_n</math>은 AGM iteration 을 만족하고 <math>\lim_{n\to\infty}a_n=1</math>이고, <math>1=M(\theta_3^2(q),\theta_4^2(q))</math>가 된다.
+
따라서 <math>a_n=\theta_3^2(q^{2^n}),b_n=\theta_4^2(q^{2^n})</math> 하면, <math>a_n, b_n</math>은 AGM iteration 을 만족하고 <math>\lim_{n\to\infty}a_n=1</math>이고, <math>1=M(\theta_3^2(q),\theta_4^2(q))</math>가 된다.
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">제1종타원적분과의 관계</h5>
+
==제1종타원적분과의 관계==
  
 
(정리)
 
(정리)
  
주어진 <math>0<k<1</math> 에 대하여, <math>k=k(q)=\frac{\theta_2^2(q)}{\theta_3^2(q)}</math>를 만족시키는 <math>q</math>가 존재한다. 이 때,
+
주어진 <math>0<k<1</math> 대하여, <math>k=k(q)=\frac{\theta_2^2(q)}{\theta_3^2(q)}</math>를 만족시키는 <math>q</math>가 존재한다. 이 때,
  
<math>M(1,k')=\theta_3^{-2}(q)</math> 와 <math>K(k) = \frac{\pi}{2}\theta_3^2(q)</math>가 성립한다.
+
<math>M(1,k')=\theta_3^{-2}(q)</math> <math>K(k) = \frac{\pi}{2}\theta_3^2(q)</math>가 성립한다.
  
여기서  <math>K(k)</math>는 [[제1종타원적분 K (complete elliptic integral of the first kind)]].
+
여기서  <math>K(k)</math>[[제1종타원적분 K (complete elliptic integral of the first kind)]].
  
 
+
  
 
(증명)
 
(증명)
233번째 줄: 173번째 줄:
 
<math>1=M(\theta_3^2(q),\theta_4^2(q))=\theta_3^{2}(q)M(1,\frac{\theta_4^2(q)}{\theta_3^2(q)})=\theta_3^{2}(q)M(1,k')</math>
 
<math>1=M(\theta_3^2(q),\theta_4^2(q))=\theta_3^{2}(q)M(1,\frac{\theta_4^2(q)}{\theta_3^2(q)})=\theta_3^{2}(q)M(1,k')</math>
  
그러므로, <math>M(1,k')=\theta_3^{-2}(q)</math>이다.
+
그러므로, <math>M(1,k')=\theta_3^{-2}(q)</math>이다.
  
한편, 란덴변환에 의해 <math>K(k)=\frac{\pi}{2M(1,\sqrt{1-k^2})}</math>가 성립([[1939326#toc 3|타원적분과 AGM의 관계]] , [[2998854#toc 3|란덴변환과 AGM]] 참조)하므로,  <math>K(k) = \frac{\pi}{2}\theta_3^2(q)</math>도 증명된다. (증명끝)
+
한편, 란덴변환에 의해 <math>K(k)=\frac{\pi}{2M(1,\sqrt{1-k^2})}</math>가 성립([[산술기하평균함수(AGM)와 파이값의 계산]] , [[란덴변환(Landen's transformation)]] 참조)하므로, <math>K(k) = \frac{\pi}{2}\theta_3^2(q)</math>도 증명된다. (증명끝)
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">special values</h5>
+
==special values==
  
<math>\theta_3(i)=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}}=1.08643481121\cdots</math>
+
<math>\theta_3(i)=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}=1.08643481121\cdots</math>
  
 
(증명)
 
(증명)
249번째 줄: 189번째 줄:
 
[[감마함수]]의 다음 성질을 사용하면<math>\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!</math>
 
[[감마함수]]의 다음 성질을 사용하면<math>\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!</math>
  
<math>\Gamma(\frac{1}{4})\Gamma(\frac{3}{4}) = \sqrt{2}{\pi </math>
+
<math>\Gamma(\frac{1}{4})\Gamma(\frac{3}{4}) = \sqrt{2}{\pi} </math>
  
 
위에서 증명한 [[제1종타원적분 K (complete elliptic integral of the first kind)]]과의 관계로부터
 
위에서 증명한 [[제1종타원적분 K (complete elliptic integral of the first kind)]]과의 관계로부터
257번째 줄: 197번째 줄:
 
<math>\frac{\pi}{2}\theta_3^2(i)=K(k_1)=K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}</math>
 
<math>\frac{\pi}{2}\theta_3^2(i)=K(k_1)=K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}</math>
  
<math>\theta_3^2(i)=\frac{\Gamma(\frac{1}{4})^2}{2{\pi}^{3/2}}=\frac{\sqrt{\pi}}{\Gamma(\frac{3}{4})^2}</math> ■
+
<math>\theta_3^2(i)=\frac{\Gamma(\frac{1}{4})^2}{2{\pi}^{3/2}}=\frac{\sqrt{\pi}}{\Gamma(\frac{3}{4})^2}</math>
  
 
+
  
<math>\theta_3(i)=\sum_{n=-\infty}^\infty e^{-\pi n^2}=1+2\sum_{n=1}^\infty e^{-\pi n^2}=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}}</math>
+
<math>\theta_3(i)=\sum_{n=-\infty}^\infty e^{-\pi n^2}=1+2\sum_{n=1}^\infty e^{-\pi n^2}=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}</math>
  
 
 
  
 
+
==재미있는 사실==
 
 
<h5 style="margin: 0px; line-height: 2em;">재미있는 사실</h5>
 
  
 
<math>f(\tau)=1+2\sum_{n=1}^{\infty}e^{\pi i n \tau}</math>
 
<math>f(\tau)=1+2\sum_{n=1}^{\infty}e^{\pi i n \tau}</math>
275번째 줄: 212번째 줄:
 
<math>\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}</math>
 
<math>\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}</math>
  
 
+
  
<math>\theta(i)=\sum_{n=-\infty}^\infty e^{-\pi n^2}=1+2\sum_{n=1}^\infty e^{-\pi n^2}=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}}</math>
+
<math>\theta(i)=\sum_{n=-\infty}^\infty e^{-\pi n^2}=1+2\sum_{n=1}^\infty e^{-\pi n^2}=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}</math>
  
 
+
  
 
<math>\sum_{n=0}^{\infty} e^{-\pi n}=\frac{e^{\pi}}{e^{\pi}-1}</math>
 
<math>\sum_{n=0}^{\infty} e^{-\pi n}=\frac{e^{\pi}}{e^{\pi}-1}</math>
289번째 줄: 226번째 줄:
 
<math>\sum_{n=0}^\infty e^{-\pi n^4}=?</math>
 
<math>\sum_{n=0}^\infty e^{-\pi n^4}=?</math>
  
 
 
  
 
 
  
<h5 style="margin: 0px; line-height: 2em;">관련된 대학원 과목</h5>
+
==관련된 항목들==
 
 
 
 
 
 
 
 
 
 
<h5>관련된 다른 주제들</h5>
 
  
 
* [[타원함수]]
 
* [[타원함수]]
 +
* [[자코비 세타함수와 자코비 형식]]
 
* [[산술기하평균함수(AGM)와 파이값의 계산|AGM과 파이값의 계산]]
 
* [[산술기하평균함수(AGM)와 파이값의 계산|AGM과 파이값의 계산]]
 
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]
 
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]
308번째 줄: 238번째 줄:
 
* [[격자의 세타함수]]
 
* [[격자의 세타함수]]
  
 
 
  
 
+
==매스매티카 파일 및 계산 리소스==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxajFqYUM5ZEVQaVE/edit
  
<h5>관련도서</h5>
 
  
* [http://www.amazon.com/First-Course-Modular-Graduate-Mathematics/dp/038723229X A First Course in Modular Forms (Graduate Texts in Mathematics)]<br>
+
==관련도서==
** Fred Diamond and Jerry Shurman, 18-19p [[1971206/attachments/1124950|four_square_theorem_and_theta_funtion.pdf]]
 
  
* Brief Introduction to Theta Functions<br>
+
* [http://www.amazon.com/First-Course-Modular-Graduate-Mathematics/dp/038723229X A First Course in Modular Forms (Graduate Texts in Mathematics)]
** BELLMAN, RICHARD
+
** Fred Diamond and Jerry Shurman, 18-19p
Tata Lectures on Theta I,II,III<br>
+
* Richard Bellman, A Brief Introduction to Theta Functions
** David Mumford
+
* David Mumford Tata Lectures on Theta I,II,III
  
 
+
==사전 형태의 자료==
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
 
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
336번째 줄: 258번째 줄:
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
  
 
+
  
 
+
  
 
+
  
<h5>관련논문</h5>
+
==관련논문==
 +
* Kazuhide Matsuda, Derivative formulas for <math>Γ(3), Γ(4), Γ(5)</math> and <math>Γ(6)</math>, arXiv:1606.07753 [math.CA], June 18 2016, http://arxiv.org/abs/1606.07753
  
*  Quadratic reciprocity and the theta function ([[1971206/attachments/2794217|reciprocity.pdf]] )<br>
+
*  Quadratic reciprocity and the theta function ([[1971206/attachments/2794217|reciprocity.pdf]] )
** Terence Tao
+
** Terence Tao
* [http://projecteuclid.org/euclid.nmj/1118797885 On a classical theta-function]<br>
+
* [http://projecteuclid.org/euclid.nmj/1118797885 On a classical theta-function]
 
** Tomio Kubota, Nagoya Math. J. Volume 37 (1970), 183-189
 
** Tomio Kubota, Nagoya Math. J. Volume 37 (1970), 183-189
* '''[Andrews65]'''[http://www.jstor.org/stable/2033875 Shorter Notes: A Simple Proof of Jacobi's Triple Product Identity]<br>
+
* [http://www.jstor.org/stable/2304027 Applications of Theta Functions to Arithmetic]
** George E. Andrews, Proceedings of the American Mathematical Society, Vol. 16, No. 2 (Apr., 1965), pp. 333-334
+
** G. D. Nichols, <cite>The American Mathematical Monthly</cite>, Vol. 45, No. 6 (Jun. - Jul., 1938), pp. 363-368
* [http://www.jstor.org/stable/2304027 Applications of Theta Functions to Arithmeti][http://www.jstor.org/stable/2304027 c]<br>
+
 
** G. D. Nichols, <cite>The American Mathematical Monthly</cite>, Vol. 45, No. 6 (Jun. - Jul., 1938), pp. 363-368
+
* [http://www.math.ohio-state.edu/%7Eeconrad/Jacobi/Jacobi.html Karl Gustav Jacob Jacobi]
 +
** [http://www.math.ohio-state.edu/%7Eeconrad/Jacobi/sumofsq Jacobi's Four Square Theorem]. (Also available in [http://www.math.ohio-state.edu/%7Eeconrad/Jacobi/sumofsq.ps postscript format] [11 pages].) [CONSTRUCTION IN PROGRESS]
 +
[[분류:리만곡면론]]
 +
[[분류:특수함수]]
 +
 
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q1154787 Q1154787]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'theta'}, {'LEMMA': 'function'}]
 +
 
 +
== 노트 ==
 +
 
 +
===말뭉치===
 +
# See Jacobi theta functions (notational variations) for further discussion.<ref name="ref_47dceeb0">[https://en.wikipedia.org/wiki/Theta_function Theta function]</ref>
 +
# More broadly, this section includes quasi-doubly periodic functions (such as the Jacobi theta functions) and other functions useful in the study of elliptic functions.<ref name="ref_8d134ea9">[https://mpmath.org/doc/current/functions/elliptic.html Elliptic functions — mpmath 1.2.0 documentation]</ref>
 +
# JacobiTheta(j, z, tau) , rendered as θ j ⁣ ( z , τ ) \theta_{j}\!\left(z , \tau\right) θ j ​ ( z , τ ) , denotes a Jacobi theta function.<ref name="ref_9b2e95bd">[https://fungrim.org/topic/Jacobi_theta_functions/ Jacobi theta functions]</ref>
 +
# There are four Jacobi theta functions, identified by the index j ∈ { 1 , 2 , 3 , 4 } j \in \left\{1, 2, 3, 4\right\} j ∈ { 1 , 2 , 3 , 4 } .<ref name="ref_9b2e95bd" />
 +
# The values of the Jacobi theta functions at z = 0 z = 0 z = 0 are known as theta constants.<ref name="ref_9b2e95bd" />
 +
# ( z , τ ) , represents the order r r r derivative of the Jacobi theta function with respect to the argument z z z .<ref name="ref_9b2e95bd" />
 +
# The following table illustrates the quasi-double periodicity of the Jacobi theta functions.<ref name="ref_e75b7981">[https://mathworld.wolfram.com/JacobiThetaFunctions.html Jacobi Theta Functions -- from Wolfram MathWorld]</ref>
 +
# Any Jacobi theta function of given arguments can be expressed in terms of any other two Jacobi theta functions with the same arguments.<ref name="ref_e75b7981" />
 +
# The plots above show the Jacobi theta functions plotted as a function of argument and nome restricted to real values.<ref name="ref_e75b7981" />
 +
# The Jacobi theta functions satisfy an almost bewilderingly large number of identities involving the four functions, their derivatives, multiples of their arguments, and sums of their arguments.<ref name="ref_e75b7981" />
 +
# Previously, we proved an addition formula for the Jacobi theta function, which allows us to recover many important classical theta function identi- ties.<ref name="ref_b04dab81">[https://msp.org/pjm/2009/240-1/pjm-v240-n1-p05-p.pdf Pacific]</ref>
 +
# We rst need to introduce the Jacobi theta functions.<ref name="ref_b04dab81" />
 +
# Let 1, 2, 3, and 4 be the Jacobi theta functions.<ref name="ref_b04dab81" />
 +
# This identity includes many well-known addition formulas for the Jacobi theta functions.<ref name="ref_b04dab81" />
 +
# We use Jacobi theta functions to construct examples of Jacobi forms over number fields.<ref name="ref_d36434ef">[https://link.springer.com/article/10.1007/s00605-003-0037-2 Jacobi Theta Functions over Number Fields]</ref>
 +
# We determine the behavior under modular transformations by regarding certain coefficients of the Jacobi theta functions as specializations of symplectic theta functions.<ref name="ref_d36434ef" />
 +
# In addition, we show how sums of those Jacobi theta functions appear as a single coefficient of a symplectic theta function.<ref name="ref_d36434ef" />
 +
# For those parameters for which this equation reduces to the heat equation, Θ(x,t) reduces to the third Jacobi Theta function.<ref name="ref_e0890d26">[https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.1670060120 A generalized jacobi theta function]</ref>
 +
# They generalize modular forms, have an associated weight and index (which is a positive half-integer), and include the classical Jacobi theta function.<ref name="ref_e3a919f9">[https://www.albany.edu/~am815139/negative_matrix_index181.pdf Rank two false theta functions and jacobi forms of]</ref>
 +
# We rst recall some properties of the Jacobi theta function.<ref name="ref_e3a919f9" />
 +
# Previously, we proved an addition formula for the Jacobi theta function, which allows us to recover many important classical theta function identities.<ref name="ref_82d33b24">[https://www.semanticscholar.org/paper/Addition-formulas-for-Jacobi-theta-functions%2C-eta-Liu/db5497037130b6cff34eee84bdea23fb0da9580a [PDF] Addition formulas for Jacobi theta functions, Dedekind’s eta function, and Ramanujan’s congruences]</ref>
 +
# This section is about a more general theta function, called the Jacobi theta function.<ref name="ref_fecd04fc">[http://www.math.columbia.edu/~woit/fourier-analysis/theta-zeta.pdf Notes on the poisson summation formula, theta]</ref>
 +
# The Jacobi theta function has the following properties: Two-fold periodicity in z (up to a phase, for xed ).<ref name="ref_fecd04fc" />
 +
===소스===
 +
<references />
  
* [http://www.jstor.org/stable/2320552 An Easy Proof of the Triple-Product Identity]<br>
+
== 메타데이터 ==
** John A. Ewell, <cite style="line-height: 2em;">[http://www.jstor.org/action/showPublication?journalCode=amermathmont The American Mathematical Monthly]</cite>, Vol. 88, No. 4 (Apr., 1981), pp. 270-272
 
  
* [http://www.math.ohio-state.edu/%7Eeconrad/Jacobi/Jacobi.html Karl Gustav Jacob Jacobi]<br>
+
===위키데이터===
** [http://www.math.ohio-state.edu/%7Eeconrad/Jacobi/sumofsq Jacobi's Four Square Theorem]. (Also available in [http://www.math.ohio-state.edu/%7Eeconrad/Jacobi/sumofsq.ps postscript format] [11 pages].) [CONSTRUCTION IN PROGRESS]
+
* ID : [https://www.wikidata.org/wiki/Q17098064 Q17098064]
* [http://www.jstor.org/action/doBasicSearch?Query=jacobi%27s+triple+product http://www.jstor.org/action/doBasicSearch?Query=jacobi's+triple+product]
+
===Spacy 패턴 목록===
*  http://www.jstor.org/action/doBasicSearch?Query=<br>  <br>
+
* [{'LOWER': 'jacobi'}, {'LOWER': 'theta'}, {'LEMMA': 'function'}]

2021년 2월 23일 (화) 04:49 기준 최신판

개요

  • \(q=e^{2\pi i \tau}\), \(x=e^{\pi i \tau}\)라 두자
  • 세타함수의 정의 (spectral decomposition of heat kernel)

\[\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}=\sum_{n=-\infty}^\infty x^{n^2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}\] \[\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}\] \[\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}\]




많이 사용되는 또다른 정의

  • 전통적인 세타함수\[\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}\]
  • 현대의 수학문헌에서는 다음과 같은 함수도 같은 이름으로 자주 사용됨\[\Theta(\tau)=\sum_{n=-\infty}^\infty q^{n^2}= \sum_{n=-\infty}^\infty e^{2\pi i n^2\tau}\,\quad (q=e^{2\pi i \tau})\]
  • \(\Theta(\tau)\) 는 \(\Gamma_0(4)\)에 대한 모듈라 형식이 됨\[\Gamma_0(4) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} {*} & {*} \\ 0 & {*} \end{pmatrix} \pmod{4} \right\}\]


여러가지 공식들

  • \(\theta_2^4(q)+\theta_4^4(q)=\theta_3^4(q)\)
  • \(\theta_3^2(q^2)+\theta_2^2(q^2)=\theta_3^2(q)\)
  • \(\theta_3^2(q^2)-\theta_2^2(q^2)=\theta_3^2(q)\)



세타함수의 모듈라 성질

정리

세타함수는 다음의 변환 성질을 만족한다 \[\theta(-\frac{1}{\tau})=\sqrt{\frac{\tau}{i}} \theta({\tau})=\sqrt{-i\tau}\theta({\tau})\] 여기서 \(-\frac{\pi}{4}<\arg \sqrt{-i\tau}<\frac{\pi}{4}\) 이 되도록 선택


증명

포아송의 덧셈 공식을 사용한다. \[\sum_{n\in \mathbb Z}f(n)=\sum_{n\in \mathbb Z}\hat{f}(n)\]

\(f(x)=e^{\pi i x^2\tau}\)의 푸리에 변환은 다음과 같이 주어진다. \[\hat{f}(\xi)=\sqrt{\frac{i}{\tau}}e^{-\pi i\frac{\xi^2}{\tau}}\] 따라서 \[\theta(\tau)= \sum_{n\in \mathbb Z} \exp(\pi i n^2\tau)=\sum_{n\in \mathbb Z}f(n)=\sum_{n\in \mathbb Z}\hat{f}(n)=\sqrt{\frac{i}{\tau}}\sum_{n\in \mathbb Z}e^{-\pi i n^2 \frac{1}{\tau}}=\sqrt{\frac{i}{\tau}}\theta(-\frac{1}{\tau})\] ■


  • \(\tau=iy, y>0\) 으로 쓰면, 다음과 같이 표현된다 \[\theta(\frac{i}{y})=\sqrt{y} \theta({iy})\]
  • \(\Gamma(2)\)에 대한 모듈라 형식이 됨\[\Gamma(2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{2} \right\}\]

더 일반적인 모듈라 변환

더 일반적으로, \(ad-bc=1\), \(ab\equiv 0\pmod 2\), \(cd\equiv 0\pmod 2\), \(c>0\)인 정수 a,b,c,d에 대하여 다음이 성립한다 \[\theta \left( \frac {a\tau+b} {c\tau+d}\right) =\epsilon(c,d) \sqrt{-i\left(c\tau+d\right)}\theta(\tau) \label{mod}\] 여기서 \(-\frac{\pi}{4}<\arg \sqrt{-i(c\tau+d)}<\frac{\pi}{4}\) 이 되도록 선택하며 (\(\Re\left(-i(c\tau+d)\right) >0\)이다), \[\epsilon(c,d)=\frac{\sqrt{c}}{S(-d,c)}\] 이고 \(S(p,q)=\sum_{r=0}^{q-1} e^{\pi i pr^2/q}\)는 가우스 합.

cusp에서의 행동과 가우스합

0 근방에서의 행동

  • \(y>0\)가 매우 작을 때,

\[\theta(iy)\sim \frac{1}{\sqrt{y}}\] (증명) \[\theta(\frac{i}{y})=\sqrt{y} \theta({iy})\] ■

일반적인 유리수(cusp)에서의 행동

  • \(pq\)가 짝수인 자연수 p,q에 대하여 \(y>0\)가 매우 작을 때,

\[\theta(\frac{p}{q}+iy)\sim \frac{1}{q}S(p,q)\frac{1}{\sqrt{y}}\] 여기서 \(S(p,q)=\sum_{r=0}^{q-1} e^{\pi i pr^2/q}\)는 가우스 합. 다음과 같이 쓸 수 있다 \[\lim_{\epsilon \to 0}\sqrt{\epsilon} \theta(\frac{p}{q}+i\epsilon)=\frac{1}{q}S(p,q)\]\[\lim_{\epsilon \to 0}\sqrt{\epsilon} \theta(-\frac{p}{q}+i\epsilon)=\frac{1}{q}\overline{S(p,q)}\]

  • 이 정리에 세타함수의 모듈라 성질을 적용하면, 가우스합의 상호법칙을 얻는다

\[ \sqrt{q}\overline{S(q,p)}=e^{-\pi i/4}\sqrt{p}S(p,q) \]


증명1

\(\tau =\frac{p}{q}+i y\)와 다음의 행렬 \[ \left( \begin{array}{cc} a & b \\ q & -p \\ \end{array} \right) \] 에 모듈라 성질 \ref{mod}를 적용하면, 다음을 얻는다 \[ \theta \left(\frac{a}{q}+\frac{i}{q^2 y}\right)= \frac{\sqrt{q}}{S(p,q)} \sqrt{q y}\theta \left(\frac{p}{q}+i y\right)=\frac{q \sqrt{y}}{S(p,q)}\theta \left(\frac{p}{q}+i y\right) \] ■


증명2

다음을 생각하자 \[\theta(\frac{p}{q}+i\epsilon)=\sum_{n=-\infty}^\infty e^{\pi i n^2(\frac{p}{q}+i\epsilon)}= \left(\sum_{r=0}^{q-1}e^{\pi i p r^2/q}\right)\left(\sum_{l=-\infty}^\infty e^{-\pi \epsilon (ql+r)^2}\right)\] 여기서 \(n=ql+r\)로 두었음.

따라서, \[\sqrt{\epsilon} \theta(\frac{p}{q}+i\epsilon)=\left(\frac{1}{q} \sum_{r=0}^{q-1}e^{i\pi p r^2/q}\right)\left(\sum_{l=-\infty}^\infty e^{-\pi \epsilon (ql+r)^2} (\sqrt{\epsilon}q)\right).\]

여기서 \(\Delta{x}=\sqrt{\epsilon}q\)로 두면, \[\sum_{l=-\infty}^\infty e^{-\pi \epsilon (ql+r)^2} ( \sqrt{\epsilon}q)=\sum_{x\in\sqrt{\epsilon}(q\mathbb{Z}+r)}e^{-\pi x^2}\Delta x.\label{thg}\] \ref{thg}에서 \(\epsilon \to 0\)을 취하면 리만합은 1차원 가우시안 적분 으로 수렴하게 된다. 따라서 \[\lim_{\epsilon \to 0}\sqrt{\epsilon} \theta(\frac{p}{q}+i\epsilon)=\left(\frac{1}{q} \sum_{r=0}^{q-1}e^{i\pi p r^2/q}\right)(\int_{-\infty}^\infty e^{-\pi x^2}\,dx)=\frac{1}{q}S(p,q)\] ■

세타함수의 삼중곱 정리(triple product)



데데킨트 에타함수와의 관계

\(\theta(\tau)=\frac{\eta(\tau)^5}{\eta(2\tau)^2\eta(\frac{\tau}{2})^2}\)

삼중곱 공식을 이용

\(\theta(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}=\sum_{n=-\infty}^\infty x^{n^2}=\prod_{m=1}^\infty \left( 1 - x^{2m}\right) \left( 1 + x^{2m-1}\right) \left( 1 + x^{2m-1}\right)\)

\(q=e^{2\pi i \tau}\), \(x=e^{\pi i \tau}\)



singular value k와의 관계

\(k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\)

\(k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}\)



세타함수와 AGM iteration

\(\frac{\theta_3^2(q)+\theta_4^2(q)}{2}=\theta_3^2(q^2)\)

\(\sqrt{\theta_3^2(q)\theta_4^2(q)}=\theta_4^2(q^2)\)

따라서 \(a_n=\theta_3^2(q^{2^n}),b_n=\theta_4^2(q^{2^n})\) 라 하면, \(a_n, b_n\)은 AGM iteration 을 만족하고 \(\lim_{n\to\infty}a_n=1\)이고, \(1=M(\theta_3^2(q),\theta_4^2(q))\)가 된다.



제1종타원적분과의 관계

(정리)

주어진 \(0<k<1\) 에 대하여, \(k=k(q)=\frac{\theta_2^2(q)}{\theta_3^2(q)}\)를 만족시키는 \(q\)가 존재한다. 이 때,

\(M(1,k')=\theta_3^{-2}(q)\) 와 \(K(k) = \frac{\pi}{2}\theta_3^2(q)\)가 성립한다.

여기서 \(K(k)\)는 제1종타원적분 K (complete elliptic integral of the first kind).


(증명)

\(1=M(\theta_3^2(q),\theta_4^2(q))=\theta_3^{2}(q)M(1,\frac{\theta_4^2(q)}{\theta_3^2(q)})=\theta_3^{2}(q)M(1,k')\)

그러므로, \(M(1,k')=\theta_3^{-2}(q)\)이다.

한편, 란덴변환에 의해 \(K(k)=\frac{\pi}{2M(1,\sqrt{1-k^2})}\)가 성립(산술기하평균함수(AGM)와 파이값의 계산 , 란덴변환(Landen's transformation) 참조)하므로, \(K(k) = \frac{\pi}{2}\theta_3^2(q)\)도 증명된다. (증명끝)



special values

\(\theta_3(i)=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}=1.08643481121\cdots\)

(증명)

감마함수의 다음 성질을 사용하면\(\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\)

\(\Gamma(\frac{1}{4})\Gamma(\frac{3}{4}) = \sqrt{2}{\pi} \)

위에서 증명한 제1종타원적분 K (complete elliptic integral of the first kind)과의 관계로부터

\(K(k(\tau)) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}} = \frac{\pi}{2}\theta_3^2(\tau)\)

\(\frac{\pi}{2}\theta_3^2(i)=K(k_1)=K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}\)

\(\theta_3^2(i)=\frac{\Gamma(\frac{1}{4})^2}{2{\pi}^{3/2}}=\frac{\sqrt{\pi}}{\Gamma(\frac{3}{4})^2}\) ■


\(\theta_3(i)=\sum_{n=-\infty}^\infty e^{-\pi n^2}=1+2\sum_{n=1}^\infty e^{-\pi n^2}=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}\)


재미있는 사실

\(f(\tau)=1+2\sum_{n=1}^{\infty}e^{\pi i n \tau}\)

\(f(i)=1+2\sum_{n=1}^{\infty} e^{-n\pi}= \frac{e^{\pi} + 1} {e^{\pi} - 1}\)

\(\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}\)


\(\theta(i)=\sum_{n=-\infty}^\infty e^{-\pi n^2}=1+2\sum_{n=1}^\infty e^{-\pi n^2}=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}\)


\(\sum_{n=0}^{\infty} e^{-\pi n}=\frac{e^{\pi}}{e^{\pi}-1}\)

\(\sum_{n=0}^\infty e^{-\pi n^2}=\frac{\sqrt[4]{\pi}}{2\Gamma(\frac{3}{4})}+\frac{1}{2}\)

\(\sum_{n=0}^\infty e^{-\pi n^3}=?\)

\(\sum_{n=0}^\infty e^{-\pi n^4}=?\)


관련된 항목들


매스매티카 파일 및 계산 리소스


관련도서

사전 형태의 자료




관련논문

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'theta'}, {'LEMMA': 'function'}]

노트

말뭉치

  1. See Jacobi theta functions (notational variations) for further discussion.[1]
  2. More broadly, this section includes quasi-doubly periodic functions (such as the Jacobi theta functions) and other functions useful in the study of elliptic functions.[2]
  3. JacobiTheta(j, z, tau) , rendered as θ j ⁣ ( z , τ ) \theta_{j}\!\left(z , \tau\right) θ j ​ ( z , τ ) , denotes a Jacobi theta function.[3]
  4. There are four Jacobi theta functions, identified by the index j ∈ { 1 , 2 , 3 , 4 } j \in \left\{1, 2, 3, 4\right\} j ∈ { 1 , 2 , 3 , 4 } .[3]
  5. The values of the Jacobi theta functions at z = 0 z = 0 z = 0 are known as theta constants.[3]
  6. ( z , τ ) , represents the order r r r derivative of the Jacobi theta function with respect to the argument z z z .[3]
  7. The following table illustrates the quasi-double periodicity of the Jacobi theta functions.[4]
  8. Any Jacobi theta function of given arguments can be expressed in terms of any other two Jacobi theta functions with the same arguments.[4]
  9. The plots above show the Jacobi theta functions plotted as a function of argument and nome restricted to real values.[4]
  10. The Jacobi theta functions satisfy an almost bewilderingly large number of identities involving the four functions, their derivatives, multiples of their arguments, and sums of their arguments.[4]
  11. Previously, we proved an addition formula for the Jacobi theta function, which allows us to recover many important classical theta function identi- ties.[5]
  12. We rst need to introduce the Jacobi theta functions.[5]
  13. Let 1, 2, 3, and 4 be the Jacobi theta functions.[5]
  14. This identity includes many well-known addition formulas for the Jacobi theta functions.[5]
  15. We use Jacobi theta functions to construct examples of Jacobi forms over number fields.[6]
  16. We determine the behavior under modular transformations by regarding certain coefficients of the Jacobi theta functions as specializations of symplectic theta functions.[6]
  17. In addition, we show how sums of those Jacobi theta functions appear as a single coefficient of a symplectic theta function.[6]
  18. For those parameters for which this equation reduces to the heat equation, Θ(x,t) reduces to the third Jacobi Theta function.[7]
  19. They generalize modular forms, have an associated weight and index (which is a positive half-integer), and include the classical Jacobi theta function.[8]
  20. We rst recall some properties of the Jacobi theta function.[8]
  21. Previously, we proved an addition formula for the Jacobi theta function, which allows us to recover many important classical theta function identities.[9]
  22. This section is about a more general theta function, called the Jacobi theta function.[10]
  23. The Jacobi theta function has the following properties: Two-fold periodicity in z (up to a phase, for xed ).[10]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'jacobi'}, {'LOWER': 'theta'}, {'LEMMA': 'function'}]