"자코비 형식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
158번째 줄: 158번째 줄:
  
 
==관련논문==
 
==관련논문==
 +
* Labrande, Hugo. “Computing Jacobi’s $\theta$ in Quasi-Linear Time.” arXiv:1511.04248 [math], November 13, 2015. http://arxiv.org/abs/1511.04248.
 
* Bringmann, Kathrin, Larry Rolen, and Sander Zwegers. “On the Fourier Coefficients of Negative Index Meromorphic Jacobi Forms.” arXiv:1501.04476 [hep-Th], January 19, 2015. http://arxiv.org/abs/1501.04476.
 
* Bringmann, Kathrin, Larry Rolen, and Sander Zwegers. “On the Fourier Coefficients of Negative Index Meromorphic Jacobi Forms.” arXiv:1501.04476 [hep-Th], January 19, 2015. http://arxiv.org/abs/1501.04476.

2015년 11월 21일 (토) 03:54 판

정의

  • 2변수 함수
  • $(\tau,z)\in \mathcal{H}\times \mathbb{C}$에 대하여, 다음과 같이 정의된다 ($q=e^{\pi i \tau}$)

\begin{align*} % \theta_1(z;\tau) \theta_{11}(z;\tau) & = \sum_{n \in \mathbb{Z}} q^{ \left( n+ \frac{1}{2} \right)^2} \, \E^{2 \pi i \left(n+\frac{1}{2} \right) \, \left( z+\frac{1}{2} \right) } = - i \, \theta_1(z; \tau) \\ & = -2 q^{1/4} \sin (\pi z)+2 q^{9/4} \sin (3 \pi z)-2 q^{25/4} \sin (5 \pi z)+2 q^{49/4} \sin (7 \pi z)-2 q^{81/4} \sin (9 \pi z) +\cdots, % \\ % & = % i \, q^{\frac{1}{8}} \, \E^{\pi \I z} \, % \left( % q, \E^{-2 \pi \I z}, \E^{2 \pi \I z} \, q % \right)_\infty \\[2mm] % % \theta_{2}(z;\tau) \theta_{10}(z;\tau) & = \sum_{n \in \mathbb{Z}} q^{\left( n + \frac{1}{2} \right)^2} \, \E^{2 \pi i \left( n+\frac{1}{2} \right) z} = \theta_2(z;\tau) \\ & = 2 q^{1/4} \cos (\pi z)+2 q^{9/4} \cos (3 \pi z)+2 q^{25/4} \cos (5 \pi z)+2 q^{49/4} \cos (7 \pi z)+2 q^{81/4} \cos (9 \pi z)+\cdots , \\[2mm] % % \theta_3 (z;\tau) \theta_{00} (z;\tau) & = \sum_{n \in \mathbb{Z}} q^{n^2} \, \E^{2 \pi i n z} = \theta_3 (z;\tau) \\ & =1+2 q \cos (2 \pi z)+2 q^4 \cos (4 \pi z)+2 q^9 \cos (6 \pi z)+2 q^{16} \cos (8 \pi z)+2 q^{25} \cos (10 \pi z)+\cdots, \\[2mm] % % \theta_0 (z;\tau) \theta_{01} (z;\tau) & = \sum_{n \in \mathbb{Z}} q^{ n^2} \, \E^{2 \pi i n \left( z+\frac{1}{2} \right) } = \theta_4(z;\tau) \\ & =1-2 q \cos (2 \pi z)+2 q^4 \cos (4 \pi z)-2 q^9 \cos (6 \pi z)+2 q^{16} \cos (8 \pi z)+2 q^{25} \cos (5 \pi (2 z+1))+\cdots \end{align*}


모듈라 성질

  • 다음과 같은 모듈라 변환 성질을 갖는다

\begin{equation} \begin{pmatrix} \theta_{11}\left( z; \tau+1 \right) \\ \theta_{10}\left( z; \tau+1 \right) \\ \theta_{00}\left( z; \tau+1 \right) \\ \theta_{01}\left( z; \tau+1 \right) \end{pmatrix}

 =
 \sqrt{ \frac{1}{i} } \,
 \begin{pmatrix}
 i & 0 & 0 & 0 \\
 0 & i & 0 & 0 \\
 0 & 0 & 0 & e^{\frac{i \pi }{4}} \\
 0 & 0 & e^{\frac{i \pi }{4}} & 0 \\
  \end{pmatrix} \,
 \begin{pmatrix}
    \theta_{11}(z;\tau) \\
    \theta_{10}(z;\tau) \\
    \theta_{00}(z;\tau) \\
    \theta_{01}(z;\tau) 
  \end{pmatrix}=
 \begin{pmatrix}
 e^{\frac{i \pi }{4}} & 0 & 0 & 0 \\
 0 & e^{\frac{i \pi }{4}} & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 1 & 0 \\
  \end{pmatrix} \,
 \begin{pmatrix}
    \theta_{11}(z;\tau) \\
    \theta_{10}(z;\tau) \\
    \theta_{00}(z;\tau) \\
    \theta_{01}(z;\tau) 
  \end{pmatrix}

\end{equation}

\begin{equation} \begin{pmatrix} \theta_{11}\left( \frac{z}{\tau}; -\frac{1}{\tau} \right) \\ \theta_{10}\left( \frac{z}{\tau}; -\frac{1}{\tau} \right) \\ \theta_{00}\left( \frac{z}{\tau}; -\frac{1}{\tau} \right) \\ \theta_{01}\left( \frac{z}{\tau}; -\frac{1}{\tau} \right) \end{pmatrix}

 =
 \sqrt{ \frac{\tau}{i} } \, \E^{ \pi i \frac{z^2}{\tau}} \,
 \begin{pmatrix}
    -i & 0 & 0 & 0 \\
    0 & 0 & 0 & 1 \\
    0 & 0 & 1 & 0 \\
    0 & 1 & 0 & 0
  \end{pmatrix} \,
 \begin{pmatrix}
    \theta_{11}(z;\tau) \\
    \theta_{10}(z;\tau) \\
    \theta_{00}(z;\tau) \\
    \theta_{01}(z;\tau) 
  \end{pmatrix}

\end{equation}

  • weight k=1/2이고, index m=1/2인 벡터 자코비 형식의 예이다


자코비 형식

  • $q=e^{2\pi i \tau}$, $y=e^{2\pi i z}$
  • 다음을 만족시키는 함수 $\phi: \mathcal{H}\times \mathbb{C}\to \mathbb{C}$ 를 자코비 형식(k : weight, m : index)이라 한다

$$ \phi\left(\frac{a\tau+b}{c\tau+d},\frac{z}{c\tau+d}\right) = (c\tau+d)^ke^{\frac{2\pi i mcz^2}{c\tau+d}}\phi(\tau,z)=(c\tau+d)^k y^{mc \frac{z}{c\tau+d}}\phi(\tau,z) $$ 여기서 ${a\ b\choose c\ d}\in SL_2(\mathbb{Z})$

$\lambda, \mu\in \mathbb{Z}$에 대하여 $$ \phi(\tau,z+\lambda\tau+\mu) = e^{-2\pi i m(\lambda^2\tau+2\lambda z)}\phi(\tau,z)=q^{-m \lambda^2} y^{-2m\lambda}\phi(\tau,z) $$

  • 푸리에 전개

$$ \phi(\tau,z) = \sum_{n\ge 0} \sum_{r^2\le 4mn} c(n,r)e^{2\pi i (n\tau+rz)}=\sum_{n\ge 0} \sum_{r^2\le 4mn} c(n,r)q^nz^r $$

메모


관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 참고자료


에세이, 리뷰, 강의노트


관련논문

  • Labrande, Hugo. “Computing Jacobi’s $\theta$ in Quasi-Linear Time.” arXiv:1511.04248 [math], November 13, 2015. http://arxiv.org/abs/1511.04248.
  • Bringmann, Kathrin, Larry Rolen, and Sander Zwegers. “On the Fourier Coefficients of Negative Index Meromorphic Jacobi Forms.” arXiv:1501.04476 [hep-Th], January 19, 2015. http://arxiv.org/abs/1501.04476.