"자코비 형식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 6개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==정의==
+
==개요==
 
* 2변수 함수
 
* 2변수 함수
 +
* 보형 함수의 예
 +
 +
 +
==자코비 형식==
 +
* <math>q=e^{2\pi i \tau}</math>, <math>y=e^{2\pi i z}</math>
 +
* 다음을 만족시키는 함수 <math>\phi: \mathcal{H}\times \mathbb{C}\to \mathbb{C}</math> 를 자코비 형식(k : weight, m : index)이라 한다
 +
:<math>
 +
\phi\left(\frac{a\tau+b}{c\tau+d},\frac{z}{c\tau+d}\right) = (c\tau+d)^ke^{\frac{2\pi i mcz^2}{c\tau+d}}\phi(\tau,z)=(c\tau+d)^k y^{mc \frac{z}{c\tau+d}}\phi(\tau,z)
 +
</math> 여기서 <math>{a\ b\choose c\ d}\in SL_2(\mathbb{Z})</math>
 +
 +
<math>\lambda, \mu\in \mathbb{Z}</math>에 대하여
 +
:<math>
 +
\phi(\tau,z+\lambda\tau+\mu) = e^{-2\pi i m(\lambda^2\tau+2\lambda z)}\phi(\tau,z)=q^{-m \lambda^2} y^{-2m\lambda}\phi(\tau,z)
 +
</math>
 +
* 푸리에 전개
 +
:<math>
 +
\phi(\tau,z) = \sum_{n\ge 0} \sum_{r^2\le 4mn} c(n,r)e^{2\pi i (n\tau+rz)}=\sum_{n\ge 0} \sum_{r^2\le 4mn} c(n,r)q^nz^r
 +
</math>
 +
 +
 +
==자코비 세타함수==
 +
===정의===
 
* <math>(\tau,z)\in \mathcal{H}\times \mathbb{C}</math>에 대하여, 다음과 같이 정의된다 (<math>q=e^{\pi i \tau}</math>)
 
* <math>(\tau,z)\in \mathcal{H}\times \mathbb{C}</math>에 대하여, 다음과 같이 정의된다 (<math>q=e^{\pi i \tau}</math>)
 
:<math>
 
:<math>
57번째 줄: 79번째 줄:
  
  
==모듈라 성질==
+
===모듈라 성질===
 
* 다음과 같은 모듈라 변환 성질을 갖는다
 
* 다음과 같은 모듈라 변환 성질을 갖는다
 
:<math>
 
:<math>
123번째 줄: 145번째 줄:
  
  
 
==자코비 형식==
 
* <math>q=e^{2\pi i \tau}</math>, <math>y=e^{2\pi i z}</math>
 
* 다음을 만족시키는 함수 <math>\phi: \mathcal{H}\times \mathbb{C}\to \mathbb{C}</math> 를 자코비 형식(k : weight, m : index)이라 한다
 
:<math>
 
\phi\left(\frac{a\tau+b}{c\tau+d},\frac{z}{c\tau+d}\right) = (c\tau+d)^ke^{\frac{2\pi i mcz^2}{c\tau+d}}\phi(\tau,z)=(c\tau+d)^k y^{mc \frac{z}{c\tau+d}}\phi(\tau,z)
 
</math> 여기서 <math>{a\ b\choose c\ d}\in SL_2(\mathbb{Z})</math>
 
 
<math>\lambda, \mu\in \mathbb{Z}</math>에 대하여
 
:<math>
 
\phi(\tau,z+\lambda\tau+\mu) = e^{-2\pi i m(\lambda^2\tau+2\lambda z)}\phi(\tau,z)=q^{-m \lambda^2} y^{-2m\lambda}\phi(\tau,z)
 
</math>
 
* 푸리에 전개
 
:<math>
 
\phi(\tau,z) = \sum_{n\ge 0} \sum_{r^2\le 4mn} c(n,r)e^{2\pi i (n\tau+rz)}=\sum_{n\ge 0} \sum_{r^2\le 4mn} c(n,r)q^nz^r
 
</math>
 
  
 
==메모==
 
==메모==
167번째 줄: 173번째 줄:
 
* Labrande, Hugo. “Computing Jacobi’s <math>\theta</math> in Quasi-Linear Time.” arXiv:1511.04248 [math], November 13, 2015. http://arxiv.org/abs/1511.04248.
 
* Labrande, Hugo. “Computing Jacobi’s <math>\theta</math> in Quasi-Linear Time.” arXiv:1511.04248 [math], November 13, 2015. http://arxiv.org/abs/1511.04248.
 
* Bringmann, Kathrin, Larry Rolen, and Sander Zwegers. “On the Fourier Coefficients of Negative Index Meromorphic Jacobi Forms.” arXiv:1501.04476 [hep-Th], January 19, 2015. http://arxiv.org/abs/1501.04476.
 
* Bringmann, Kathrin, Larry Rolen, and Sander Zwegers. “On the Fourier Coefficients of Negative Index Meromorphic Jacobi Forms.” arXiv:1501.04476 [hep-Th], January 19, 2015. http://arxiv.org/abs/1501.04476.
 +
 +
== 노트 ==
 +
 +
===말뭉치===
 +
# Meromorphic Jacobi forms appear in the theory of Mock modular forms.<ref name="ref_845eaaa7">[https://en.wikipedia.org/wiki/Jacobi_form Jacobi form]</ref>
 +
# IntroductionIn this note we give a geometrical approach to the theory of Jacobi forms, whichwas originated in an analytic way by Eichler and Zagier (cf.<ref name="ref_a19b4d99">[http://www.numdam.org/article/CM_1991__79_1_1_0.pdf Compositio mathematica]</ref>
 +
# To solve it, we determine the divisor of a suitablychosen (meromorphic) Jacobi form of weight k, index m with respect to r.We first recall two elementary lemmas.<ref name="ref_a19b4d99" />
 +
# Notation Let e(x) denote e2ix for x C. Let q = e( ) and = e(z) where H and z C. Jacobi forms are meant to be a natural generalization of Jacobi theta series.<ref name="ref_dca33bc8">[https://www.math.mcgill.ca/goren/Montreal-Toronto/Victoria.pdf Jacobi forms]</ref>
 +
# The Transformation Law Jacobi forms are complex functions on H C which are invariant under an action of the Jacobi group.<ref name="ref_dca33bc8" />
 +
# Notation Let Jk,m() denote the vector space of all Jacobi forms with weight k and index m on a congruence subgroup .<ref name="ref_dca33bc8" />
 +
# The Jacobi-Eisenstein series Ek,m is a Jacobi form on SL2(Z).<ref name="ref_dca33bc8" />
 +
# We introduce a concept of Jacobi forms and try to explain a various connection with other fields, such as quasi-modular forms and Mock modular forms if time allows.<ref name="ref_6522a2ec">[https://www.semanticscholar.org/paper/4-LECTURES-ON-JACOBI-FORMS-Eisenstein/5fedfcb4be1a05478390421bfa64c0b504ff99ed [PDF] 4 LECTURES ON JACOBI FORMS]</ref>
 +
# In this paper, we generalize this result to Jacobi forms defined over ℋ×ℂ(g,1).<ref name="ref_68f4a3fc">[https://www.cambridge.org/core/journals/journal-of-the-australian-mathematical-society/article/rankins-method-and-jacobi-forms-of-several-variables/B78BF4B19FB0326A63E8BCFE17849B5D RANKIN’S METHOD AND JACOBI FORMS OF SEVERAL VARIABLES]</ref>
 +
# Building Jacobi forms.<ref name="ref_8fe8729f">[https://www.researchgate.net/publication/26533832_On_the_Fourier_expansions_of_Jacobi_forms (PDF) On the Fourier expansions of Jacobi forms]</ref>
 +
# Here we prove that two additional combinatorial functions are quantum Jacobi forms, one of which is a normalized version of the function in (1.1).<ref name="ref_b9965b83">[https://afolsom.people.amherst.edu/BFUWX_JNT18.pdf Journal of number theory 186 (2018) 16–34]</ref>
 +
# In Theorem 1.1, we prove that V + is a quantum Jacobi form with respect to the congruence subgroup 0(4) SL2(Z).<ref name="ref_b9965b83" />
 +
# R ei t22zt cosh(t) dt, and , are the familiar holomorphic modular and Jacobi forms dened in (2.3).<ref name="ref_b9965b83" />
 +
# (1) Theorem 1.1 shows that the function V + is a quantum Jacobi form of weight 1 2 and (cid:8) (cid:7) 1 0 .<ref name="ref_b9965b83" />
 +
# Jacobi forms of lattice index have applications in the theory of reective modular forms and that of vertex operator algebras, among other areas.<ref name="ref_aae5fdf3">[https://andreeamocanu.github.io/jacobi-forms-lattice-index.pdf University of nottingham]</ref>
 +
# We dene Poincare series for Jacobi forms of lattice index and show that they reproduce Fourier coecients of cusp forms under the Petersson scalar product.<ref name="ref_aae5fdf3" />
 +
# This thesis concerns a certain generalization of elliptic modular forms called Jacobi forms of lattice index.<ref name="ref_aae5fdf3" />
 +
# Interest in Jacobi forms has increased in recent years due to their numerous applications to number theory, algebraic geometry and string theory.<ref name="ref_aae5fdf3" />
 +
===소스===
 +
<references />
 +
 +
== 메타데이터 ==
 +
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q6119638 Q6119638]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'jacobi'}, {'LEMMA': 'form'}]

2021년 2월 23일 (화) 04:53 기준 최신판

개요

  • 2변수 함수
  • 보형 함수의 예


자코비 형식

  • \(q=e^{2\pi i \tau}\), \(y=e^{2\pi i z}\)
  • 다음을 만족시키는 함수 \(\phi: \mathcal{H}\times \mathbb{C}\to \mathbb{C}\) 를 자코비 형식(k : weight, m : index)이라 한다

\[ \phi\left(\frac{a\tau+b}{c\tau+d},\frac{z}{c\tau+d}\right) = (c\tau+d)^ke^{\frac{2\pi i mcz^2}{c\tau+d}}\phi(\tau,z)=(c\tau+d)^k y^{mc \frac{z}{c\tau+d}}\phi(\tau,z) \] 여기서 \({a\ b\choose c\ d}\in SL_2(\mathbb{Z})\)

\(\lambda, \mu\in \mathbb{Z}\)에 대하여 \[ \phi(\tau,z+\lambda\tau+\mu) = e^{-2\pi i m(\lambda^2\tau+2\lambda z)}\phi(\tau,z)=q^{-m \lambda^2} y^{-2m\lambda}\phi(\tau,z) \]

  • 푸리에 전개

\[ \phi(\tau,z) = \sum_{n\ge 0} \sum_{r^2\le 4mn} c(n,r)e^{2\pi i (n\tau+rz)}=\sum_{n\ge 0} \sum_{r^2\le 4mn} c(n,r)q^nz^r \]


자코비 세타함수

정의

  • \((\tau,z)\in \mathcal{H}\times \mathbb{C}\)에 대하여, 다음과 같이 정의된다 (\(q=e^{\pi i \tau}\))

\[ \begin{align*} % \theta_1(z;\tau) \theta_{11}(z;\tau) & = \sum_{n \in \mathbb{Z}} q^{ \left( n+ \frac{1}{2} \right)^2} \, \E^{2 \pi i \left(n+\frac{1}{2} \right) \, \left( z+\frac{1}{2} \right) } = - i \, \theta_1(z; \tau) \\ & = -2 q^{1/4} \sin (\pi z)+2 q^{9/4} \sin (3 \pi z)-2 q^{25/4} \sin (5 \pi z)+2 q^{49/4} \sin (7 \pi z)-2 q^{81/4} \sin (9 \pi z) +\cdots, % \\ % & = % i \, q^{\frac{1}{8}} \, \E^{\pi \I z} \, % \left( % q, \E^{-2 \pi \I z}, \E^{2 \pi \I z} \, q % \right)_\infty \\[2mm] % % \theta_{2}(z;\tau) \theta_{10}(z;\tau) & = \sum_{n \in \mathbb{Z}} q^{\left( n + \frac{1}{2} \right)^2} \, \E^{2 \pi i \left( n+\frac{1}{2} \right) z} = \theta_2(z;\tau) \\ & = 2 q^{1/4} \cos (\pi z)+2 q^{9/4} \cos (3 \pi z)+2 q^{25/4} \cos (5 \pi z)+2 q^{49/4} \cos (7 \pi z)+2 q^{81/4} \cos (9 \pi z)+\cdots , \\[2mm] % % \theta_3 (z;\tau) \theta_{00} (z;\tau) & = \sum_{n \in \mathbb{Z}} q^{n^2} \, \E^{2 \pi i n z} = \theta_3 (z;\tau) \\ & =1+2 q \cos (2 \pi z)+2 q^4 \cos (4 \pi z)+2 q^9 \cos (6 \pi z)+2 q^{16} \cos (8 \pi z)+2 q^{25} \cos (10 \pi z)+\cdots, \\[2mm] % % \theta_0 (z;\tau) \theta_{01} (z;\tau) & = \sum_{n \in \mathbb{Z}} q^{ n^2} \, \E^{2 \pi i n \left( z+\frac{1}{2} \right) } = \theta_4(z;\tau) \\ & =1-2 q \cos (2 \pi z)+2 q^4 \cos (4 \pi z)-2 q^9 \cos (6 \pi z)+2 q^{16} \cos (8 \pi z)+2 q^{25} \cos (5 \pi (2 z+1))+\cdots \end{align*} \]


모듈라 성질

  • 다음과 같은 모듈라 변환 성질을 갖는다

\[ \begin{equation} \begin{pmatrix} \theta_{11}\left( z; \tau+1 \right) \\ \theta_{10}\left( z; \tau+1 \right) \\ \theta_{00}\left( z; \tau+1 \right) \\ \theta_{01}\left( z; \tau+1 \right) \end{pmatrix} = \sqrt{ \frac{1}{i} } \, \begin{pmatrix} i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & e^{\frac{i \pi }{4}} \\ 0 & 0 & e^{\frac{i \pi }{4}} & 0 \\ \end{pmatrix} \, \begin{pmatrix} \theta_{11}(z;\tau) \\ \theta_{10}(z;\tau) \\ \theta_{00}(z;\tau) \\ \theta_{01}(z;\tau) \end{pmatrix}= \begin{pmatrix} e^{\frac{i \pi }{4}} & 0 & 0 & 0 \\ 0 & e^{\frac{i \pi }{4}} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \end{pmatrix} \, \begin{pmatrix} \theta_{11}(z;\tau) \\ \theta_{10}(z;\tau) \\ \theta_{00}(z;\tau) \\ \theta_{01}(z;\tau) \end{pmatrix} \end{equation} \]

\[ \begin{equation} \begin{pmatrix} \theta_{11}\left( \frac{z}{\tau}; -\frac{1}{\tau} \right) \\ \theta_{10}\left( \frac{z}{\tau}; -\frac{1}{\tau} \right) \\ \theta_{00}\left( \frac{z}{\tau}; -\frac{1}{\tau} \right) \\ \theta_{01}\left( \frac{z}{\tau}; -\frac{1}{\tau} \right) \end{pmatrix} = \sqrt{ \frac{\tau}{i} } \, \E^{ \pi i \frac{z^2}{\tau}} \, \begin{pmatrix} -i & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \, \begin{pmatrix} \theta_{11}(z;\tau) \\ \theta_{10}(z;\tau) \\ \theta_{00}(z;\tau) \\ \theta_{01}(z;\tau) \end{pmatrix} \end{equation} \]

  • weight k=1/2이고, index m=1/2인 벡터 자코비 형식의 예이다


메모


관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 참고자료


에세이, 리뷰, 강의노트


관련논문

  • Nathan C. Ryan, Nicolás Sirolli, Nils-Peter Skoruppa, Gonzalo Tornaría, Computing Jacobi Forms, arXiv:1602.07021 [math.NT], February 23 2016, http://arxiv.org/abs/1602.07021
  • Labrande, Hugo. “Computing Jacobi’s \(\theta\) in Quasi-Linear Time.” arXiv:1511.04248 [math], November 13, 2015. http://arxiv.org/abs/1511.04248.
  • Bringmann, Kathrin, Larry Rolen, and Sander Zwegers. “On the Fourier Coefficients of Negative Index Meromorphic Jacobi Forms.” arXiv:1501.04476 [hep-Th], January 19, 2015. http://arxiv.org/abs/1501.04476.

노트

말뭉치

  1. Meromorphic Jacobi forms appear in the theory of Mock modular forms.[1]
  2. IntroductionIn this note we give a geometrical approach to the theory of Jacobi forms, whichwas originated in an analytic way by Eichler and Zagier (cf.[2]
  3. To solve it, we determine the divisor of a suitablychosen (meromorphic) Jacobi form of weight k, index m with respect to r.We first recall two elementary lemmas.[2]
  4. Notation Let e(x) denote e2ix for x C. Let q = e( ) and = e(z) where H and z C. Jacobi forms are meant to be a natural generalization of Jacobi theta series.[3]
  5. The Transformation Law Jacobi forms are complex functions on H C which are invariant under an action of the Jacobi group.[3]
  6. Notation Let Jk,m() denote the vector space of all Jacobi forms with weight k and index m on a congruence subgroup .[3]
  7. The Jacobi-Eisenstein series Ek,m is a Jacobi form on SL2(Z).[3]
  8. We introduce a concept of Jacobi forms and try to explain a various connection with other fields, such as quasi-modular forms and Mock modular forms if time allows.[4]
  9. In this paper, we generalize this result to Jacobi forms defined over ℋ×ℂ(g,1).[5]
  10. Building Jacobi forms.[6]
  11. Here we prove that two additional combinatorial functions are quantum Jacobi forms, one of which is a normalized version of the function in (1.1).[7]
  12. In Theorem 1.1, we prove that V + is a quantum Jacobi form with respect to the congruence subgroup 0(4) SL2(Z).[7]
  13. R ei t22zt cosh(t) dt, and , are the familiar holomorphic modular and Jacobi forms dened in (2.3).[7]
  14. (1) Theorem 1.1 shows that the function V + is a quantum Jacobi form of weight 1 2 and (cid:8) (cid:7) 1 0 .[7]
  15. Jacobi forms of lattice index have applications in the theory of reective modular forms and that of vertex operator algebras, among other areas.[8]
  16. We dene Poincare series for Jacobi forms of lattice index and show that they reproduce Fourier coecients of cusp forms under the Petersson scalar product.[8]
  17. This thesis concerns a certain generalization of elliptic modular forms called Jacobi forms of lattice index.[8]
  18. Interest in Jacobi forms has increased in recent years due to their numerous applications to number theory, algebraic geometry and string theory.[8]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'jacobi'}, {'LEMMA': 'form'}]