"제1종타원적분 K (complete elliptic integral of the first kind)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 8개는 보이지 않습니다)
6번째 줄: 6번째 줄:
 
* <math>k</math>가 타원적분의 singular value 일때([[타원적분의 singular value k]]), 일종타원적분의 값을 구하는 문제
 
* <math>k</math>가 타원적분의 singular value 일때([[타원적분의 singular value k]]), 일종타원적분의 값을 구하는 문제
 
** 19세기부터 많이 연구된 타원 함수 이론의 고전적인 문제이며, [[complex multiplication]] 이론, 타원곡선의 [[periods]] 의 틀에서 이해할 수 있음
 
** 19세기부터 많이 연구된 타원 함수 이론의 고전적인 문제이며, [[complex multiplication]] 이론, 타원곡선의 [[periods]] 의 틀에서 이해할 수 있음
** $K(k)$의 값을 감마함수의 값의 곱으로 표현
+
** <math>K(k)</math>의 값을 감마함수의 값의 곱으로 표현
 
** 아래에 몇가지 예가 제시
 
** 아래에 몇가지 예가 제시
  
54번째 줄: 54번째 줄:
 
   
 
   
  
+
==special values==
 
+
===예===
==special values of <math>K(k)</math>==
 
  
 
<math>K(0) = \frac{\pi}{2}</math>
 
<math>K(0) = \frac{\pi}{2}</math>
63번째 줄: 62번째 줄:
  
 
<math>K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots</math>
 
<math>K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots</math>
 
<math>K(2\sqrt{2}-2)</math>
 
  
 
<math>K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}}{2^{13/4}}B(\frac{1}{8},\frac{3}{8})=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}</math>
 
<math>K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}}{2^{13/4}}B(\frac{1}{8},\frac{3}{8})=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}</math>
77번째 줄: 74번째 줄:
  
  
 
+
===<math>\sqrt{-1}</math>===
===<math>K(\frac{1}{\sqrt{2}})=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots</math>===
+
; 정리
 
+
:<math>K(\frac{1}{\sqrt{2}})=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots \label{ellk1}</math>
* [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분|렘니스케이트(lemniscate) 곡선과 타원적분]] 항목 참조
+
* [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분]] 항목 참조
  
  
  
===<math>K(2\sqrt{2}-2)</math>===
+
===<math>\sqrt{-2}</math>===
 +
; 정리
 +
:<math>K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}</math>
  
;증명
 
  
<math>K(\frac{2\sqrt{k}}{1+k})=(1+k)K(k)</math>
 
  
+
===<math>\sqrt{-3}</math>===
 
+
; 정리
+
:<math>K\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)=\frac{\sqrt[4]{3}\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt{\pi}}=2.768063\cdots</math>
===<math>K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}</math>===
 
 
 
 
 
 
 
 
 
===<math>K\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)=\frac{\sqrt[4]{3}\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt{\pi}}=2.768063\cdots</math>===
 
  
  
 
;증명
 
;증명
<math>\cos \frac{\pi}{12}=\frac{\sqrt{6}+\sqrt{2}}{4}</math>, <math>\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}</math> 이므로 위에서 얻은 결과를 활용하면,
+
<math>\cos \frac{\pi}{12}=\frac{\sqrt{6}+\sqrt{2}}{4}</math>, <math>\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}</math> 이므로 [[타원곡선의 주기]]에서 얻은 결과를 활용하면, 다음을 얻는다
 
+
:<math>K\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)=\frac{1}{2}\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 - \sqrt{3}u  + 1)}}</math>
<math>K\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)=\frac{1}{2}\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 - \sqrt{3}u  + 1)}}</math>
 
 
 
 
여기서 <math>v=\sqrt{3}u-1</math> 으로 치환하면, <math>u(u^2 - \sqrt{3}u+ 1) = 3^{-3/2}(1 + v^3)</math>
 
여기서 <math>v=\sqrt{3}u-1</math> 으로 치환하면, <math>u(u^2 - \sqrt{3}u+ 1) = 3^{-3/2}(1 + v^3)</math>
 +
따라서
 +
:<math>
 +
\begin{aligned}
 +
\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 - \sqrt{3}u  + 1)}}&=\sqrt[4]{3}\int_{-1}^{\infty} \frac{dv}{\sqrt{v^3+1}}=\sqrt[4]{3}(\int_{-1}^{0} \frac{dv}{\sqrt{v^3+1}}+\int_{0}^{\infty} \frac{dv}{\sqrt{v^3+1}}) \\
 +
&=\sqrt[4]{3}(\int_{0}^{1} \frac{dv}{\sqrt{1-v^3}}+\int_{0}^{\infty} \frac{dv}{\sqrt{1+v^3}}) \\
 +
&=\frac{\sqrt[4]{3}\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{2\sqrt{\pi}}=5.536129
 +
\cdots
 +
\end{aligned}
 +
</math>
 +
마지막에서 다음을 이용하였음. (이에 대한 증명은 [[오일러 베타적분(베타함수)]] 항목 참조)
 +
:<math>\int_{0}^{1} \frac{dv}{\sqrt{1-v^3}}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{6\sqrt{\pi}}</math>
 +
:<math>\int_{0}^{\infty} \frac{dv}{\sqrt{1+v^3}}=\frac{ \Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{3\sqrt{\pi }}</math> ■
  
<math>\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 - \sqrt{3}u  + 1)}}=\sqrt[4]{3}\int_{-1}^{\infty} \frac{dv}{\sqrt{v^3+1}}=\sqrt[4]{3}(\int_{-1}^{0} \frac{dv}{\sqrt{v^3+1}}+\int_{0}^{\infty} \frac{dv}{\sqrt{v^3+1}})</math>
+
;정리
 
+
:<math>K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt[4]{3}\sqrt{\pi}}=1.5981420\cdots</math>
<math>=\sqrt[4]{3}(\int_{0}^{1} \frac{dv}{\sqrt{1-v^3}}+\int_{0}^{\infty} \frac{dv}{\sqrt{1+v^3}})=\frac{\sqrt[4]{3}\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{2\sqrt{\pi}}=5.536129\cdots</math>
+
;증명1
 
+
다음 사실을 이용
마지막에서 다음을 이용하였음. (이에 대한 증명은 [[오일러 베타적분(베타함수)|오일러 베타적분]] 항목 참조)
+
:<math>\frac{K'}{K}\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)= \sqrt{3}</math>
 
 
<math>\int_{0}^{1} \frac{dv}{\sqrt{1-v^3}}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{6\sqrt{\pi}}</math>
 
 
 
<math>\int_{0}^{\infty} \frac{dv}{\sqrt{1+v^3}}=\frac{ \Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{3\sqrt{\pi }}</math> ■
 
 
 
===<math>K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt[4]{3}\sqrt{\pi}}=1.5981420\cdots</math>===
 
 
 
;증명
 
 
 
* <math>\frac{K'}{K}\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)= \sqrt{3}</math> 을 이용할 수도 있고, 다음과 같이 직접 증명도 가능  *
 
 
 
<math>\cos \frac{5\pi}{12}=\frac{\sqrt{6}-\sqrt{2}}{4}</math>, <math>\cos \frac{5\pi}{6}=-\frac{\sqrt{3}}{2}</math> 이므로 위에서 얻은 결과를 활용하면,
 
  
<math>K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{1}{2}\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 + \sqrt{3}u + 1)}}</math>
 
  
 +
;증명2
 +
<math>\cos \frac{5\pi}{12}=\frac{\sqrt{6}-\sqrt{2}}{4}</math>, <math>\cos \frac{5\pi}{6}=-\frac{\sqrt{3}}{2}</math> 이므로 [[타원곡선의 주기]]의 결과를 활용하면 다음을 얻는다
 +
:<math>K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{1}{2}\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 + \sqrt{3}u + 1)}}</math>
 
여기서 <math>v=\sqrt{3}u+1</math> 으로 치환하면, <math>u(u^2 + \sqrt{3}u+ 1) = 3^{-3/2}(v^3-1)</math>
 
여기서 <math>v=\sqrt{3}u+1</math> 으로 치환하면, <math>u(u^2 + \sqrt{3}u+ 1) = 3^{-3/2}(v^3-1)</math>
 +
따라서
 +
:<math>\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2+ \sqrt{3}u + 1)}}=\sqrt[4]{3}\int_{1}^{\infty} \frac{dv}{\sqrt{v^3-1}}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{2\sqrt[4]{3}\sqrt{\pi}}=3.1962840\cdots</math> ■
  
<math>\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2+ \sqrt{3}u + 1)}}=\sqrt[4]{3}\int_{1}^{\infty} \frac{dv}{\sqrt{v^3-1}}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{2\sqrt[4]{3}\sqrt{\pi}}=3.1962840\cdots</math>
 
  
+
===<math>\sqrt{-4}</math>===
===<math>K\left(3-2\sqrt{2}\right)=\frac{(2+\sqrt{2})\Gamma(\frac{1}{4})^2}{16\sqrt{\pi}}=1.58255\cdots</math>===
+
;정리
 +
:<math>K\left(3-2\sqrt{2}\right)=\frac{(2+\sqrt{2})\Gamma(\frac{1}{4})^2}{16\sqrt{\pi}}=1.58255\cdots</math>
  
 
;증명
 
;증명
[[란덴변환(Landen's transformation)|란덴변환]]을 이용
+
[[란덴변환(Landen's transformation)]]
 
:<math>K(\frac{2\sqrt{k}}{1+k})=(1+k)K(k)</math>
 
:<math>K(\frac{2\sqrt{k}}{1+k})=(1+k)K(k)</math>
여기서 <math>k=3-2\sqrt{2}</math>라 두면,  
+
을 이용하자. 여기서 <math>k=3-2\sqrt{2}</math>라 두면, 다음을 얻는다
 
:<math>\frac{2\sqrt{k}}{1+k}=\frac{1}{\sqrt{2}}</math>
 
:<math>\frac{2\sqrt{k}}{1+k}=\frac{1}{\sqrt{2}}</math>
 +
따라서 다음이 성립한다
 +
:<math>K(\frac{1}{\sqrt{2}})=(4-2\sqrt{2})K(3-2\sqrt{2})</math>
 +
\ref{ellk1}로부터 다음을 얻는다
 +
:<math>K\left(3-2\sqrt{2}\right)=\frac{(2+\sqrt{2})\Gamma(\frac{1}{4})^2}{16\sqrt{\pi}}=1.58255\cdots</math> ■
  
이로부터
 
  
<math>K(\frac{1}{\sqrt{2}})=(4-2\sqrt{2})K(3-2\sqrt{2})</math>
+
===Chowla-셀베르그의 정리===
 +
;정리
 +
<math>k</math>에 대하여, 다음의 값 :<math>i\frac{K'}{K}(k):=i\frac{K(\sqrt{1-k^2})}{K(k)}</math> 이 <math>d_F</math>를 판별식으로 갖는 복소이차수체 <math>F=\mathbb{Q}(\sqrt{d_F})</math>의 원소일 때, [[제1종타원적분 K (complete elliptic integral of the first kind)|제1종타원적분 K]]에 대하여 다음이 성립한다
 +
:<math>{K}(k)=\lambda\sqrt{\pi}\left(\prod_{m=1}^{|d_F|}\Gamma(\frac{m}{|d_F|})^{\left(\frac{d_F}{m}\right)}\right)^{\frac{w_{F}}{4h_{F}}}</math> 여기서 <math>\lambda</math>는 적당한 [[대수적수론|대수적수]].
 +
* [[Chowla-셀베르그 공식]] 항목 참조
  
<math>K(\frac{1}{\sqrt{2}})=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots</math> 로부터
 
  
<math>K\left(3-2\sqrt{2}\right)=\frac{(2+\sqrt{2})\Gamma(\frac{1}{4})^2}{16\sqrt{\pi}}=1.58255\cdots</math>
+
==메모==
 +
* http://mathoverflow.net/questions/87551/can-elliptic-integral-singular-values-generate-cubic-polynomials-with-integer-co
 +
* <math>K(2\sqrt{2}-2)</math>
  
  
168번째 줄: 168번째 줄:
  
  
+
==매스매티카 파일 및 계산 리소스==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxbkozeFVSbVBmX0k/edit
 +
* http://mathworld.wolfram.com/EllipticIntegralSingularValue.html
 +
* http://mathworld.wolfram.com/EllipticIntegralSingularValuek1.html
 +
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 +
 
 +
 
  
 
==사전 형태의 자료==
 
==사전 형태의 자료==
174번째 줄: 180번째 줄:
 
* http://ko.wikipedia.org/wiki/타원적분
 
* http://ko.wikipedia.org/wiki/타원적분
 
* http://en.wikipedia.org/wiki/Elliptic_integral
 
* http://en.wikipedia.org/wiki/Elliptic_integral
* http://mathworld.wolfram.com/EllipticIntegralSingularValue.html
 
* http://mathworld.wolfram.com/EllipticIntegralSingularValuek1.html
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
 
  
 
   
 
   
207번째 줄: 209번째 줄:
 
** sos440
 
** sos440
 
[[분류:타원적분]]
 
[[분류:타원적분]]
 +
[[분류:특수함수]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q1126603 Q1126603]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'elliptic'}, {'LEMMA': 'integral'}]

2021년 2월 17일 (수) 05:59 기준 최신판

개요

  • 제1종 완전타원적분

\[K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}=\int_0^1\frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\]

  • 타원곡선의 주기이다
  • \(k\)가 타원적분의 singular value 일때(타원적분의 singular value k), 일종타원적분의 값을 구하는 문제
    • 19세기부터 많이 연구된 타원 함수 이론의 고전적인 문제이며, complex multiplication 이론, 타원곡선의 periods 의 틀에서 이해할 수 있음
    • \(K(k)\)의 값을 감마함수의 값의 곱으로 표현
    • 아래에 몇가지 예가 제시


란덴변환

  • 다음 변환 공식을 타원적분에 대한 란덴 변환이라 함.

\[K(\frac{2\sqrt{k}}{1+k})=(1+k)K(k)\]

  • \(k'=\sqrt{1-k^2}\)라 두면

\[2K(\frac{1-k'}{1+k'})=(1+k')K(k)\]


초기하함수를 이용한 표현

\[K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)\] \[K(k) = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{(\frac{1}{2})_n(\frac{1}{2})_n}{n!(1)_n}k^{2n} = \frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)\]

(증명)

\[K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}} = \int_0^{\frac{\pi}{2}}\sum_{n=0}^{\infty}\frac{(\frac{1}{2})_n}{n!} k^{2n}\sin^{2n}\theta{d\theta} \]

\[\int_0^{\frac{\pi}{2}}\sin^{2n}\theta{d\theta}=\frac{\pi}{2}\frac{(\frac{1}{2})_n}{(1)_n}\] 이므로 (오일러 베타적분(베타함수) 항목 참조)

\[K(k) = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{(\frac{1}{2})_n(\frac{1}{2})_n}{n!(1)_n}k^{2n} = \frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)\]■


맴돌이군



singular values

  • 자연수 \(n \) 에 대하여, 다음을 만족시키는 \(k\)를 타원적분의 singular value 라 한다

\[\frac{K'}{K}(k):=\frac{K(\sqrt{1-k^2})}{K(k)}= \sqrt n \]

  • 타원적분 singular value k 항목 참조
  • 예\[\frac{K'}{K}(\frac{1}{\sqrt{2}})= 1\]\[\frac{K'}{K}(\sqrt{2}-1)= \sqrt{2}\]\[\frac{K'}{K}\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)= \sqrt{3}\]\[\frac{K'}{K}\left(3-2\sqrt{2}\right)= \sqrt{4}\]


special values

\(K(0) = \frac{\pi}{2}\)

\(K(1) = \infty\)

\(K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots\)

\(K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}}{2^{13/4}}B(\frac{1}{8},\frac{3}{8})=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}\)

\(K\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)=\frac{\sqrt[4]{3}\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt{\pi}}=2.768063\cdots\)

\(K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt[4]{3}\sqrt{\pi}}=1.5981420\cdots\)

\(K\left(3-2\sqrt{2}\right)=\frac{(2+\sqrt{2})\Gamma(\frac{1}{4})^2}{16\sqrt{\pi}}=1.58255\cdots\)

  • 더 자세한 목록은 [Zucker77] 또는 [Borwein98] 참조


\(\sqrt{-1}\)

정리

\[K(\frac{1}{\sqrt{2}})=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots \label{ellk1}\]


\(\sqrt{-2}\)

정리

\[K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}\]


\(\sqrt{-3}\)

정리

\[K\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)=\frac{\sqrt[4]{3}\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt{\pi}}=2.768063\cdots\]


증명

\(\cos \frac{\pi}{12}=\frac{\sqrt{6}+\sqrt{2}}{4}\), \(\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}\) 이므로 타원곡선의 주기에서 얻은 결과를 활용하면, 다음을 얻는다 \[K\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)=\frac{1}{2}\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 - \sqrt{3}u + 1)}}\] 여기서 \(v=\sqrt{3}u-1\) 으로 치환하면, \(u(u^2 - \sqrt{3}u+ 1) = 3^{-3/2}(1 + v^3)\) 따라서 \[ \begin{aligned} \int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 - \sqrt{3}u + 1)}}&=\sqrt[4]{3}\int_{-1}^{\infty} \frac{dv}{\sqrt{v^3+1}}=\sqrt[4]{3}(\int_{-1}^{0} \frac{dv}{\sqrt{v^3+1}}+\int_{0}^{\infty} \frac{dv}{\sqrt{v^3+1}}) \\ &=\sqrt[4]{3}(\int_{0}^{1} \frac{dv}{\sqrt{1-v^3}}+\int_{0}^{\infty} \frac{dv}{\sqrt{1+v^3}}) \\ &=\frac{\sqrt[4]{3}\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{2\sqrt{\pi}}=5.536129 \cdots \end{aligned} \] 마지막에서 다음을 이용하였음. (이에 대한 증명은 오일러 베타적분(베타함수) 항목 참조) \[\int_{0}^{1} \frac{dv}{\sqrt{1-v^3}}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{6\sqrt{\pi}}\] \[\int_{0}^{\infty} \frac{dv}{\sqrt{1+v^3}}=\frac{ \Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{3\sqrt{\pi }}\] ■

정리

\[K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt[4]{3}\sqrt{\pi}}=1.5981420\cdots\]

증명1

다음 사실을 이용 \[\frac{K'}{K}\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)= \sqrt{3}\] ■


증명2

\(\cos \frac{5\pi}{12}=\frac{\sqrt{6}-\sqrt{2}}{4}\), \(\cos \frac{5\pi}{6}=-\frac{\sqrt{3}}{2}\) 이므로 타원곡선의 주기의 결과를 활용하면 다음을 얻는다 \[K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{1}{2}\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 + \sqrt{3}u + 1)}}\] 여기서 \(v=\sqrt{3}u+1\) 으로 치환하면, \(u(u^2 + \sqrt{3}u+ 1) = 3^{-3/2}(v^3-1)\) 따라서 \[\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2+ \sqrt{3}u + 1)}}=\sqrt[4]{3}\int_{1}^{\infty} \frac{dv}{\sqrt{v^3-1}}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{2\sqrt[4]{3}\sqrt{\pi}}=3.1962840\cdots\] ■


\(\sqrt{-4}\)

정리

\[K\left(3-2\sqrt{2}\right)=\frac{(2+\sqrt{2})\Gamma(\frac{1}{4})^2}{16\sqrt{\pi}}=1.58255\cdots\]

증명

란덴변환(Landen's transformation) \[K(\frac{2\sqrt{k}}{1+k})=(1+k)K(k)\] 을 이용하자. 여기서 \(k=3-2\sqrt{2}\)라 두면, 다음을 얻는다 \[\frac{2\sqrt{k}}{1+k}=\frac{1}{\sqrt{2}}\] 따라서 다음이 성립한다 \[K(\frac{1}{\sqrt{2}})=(4-2\sqrt{2})K(3-2\sqrt{2})\] \ref{ellk1}로부터 다음을 얻는다 \[K\left(3-2\sqrt{2}\right)=\frac{(2+\sqrt{2})\Gamma(\frac{1}{4})^2}{16\sqrt{\pi}}=1.58255\cdots\] ■


Chowla-셀베르그의 정리

정리

\(k\)에 대하여, 다음의 값 \[i\frac{K'}{K}(k):=i\frac{K(\sqrt{1-k^2})}{K(k)}\] 이 \(d_F\)를 판별식으로 갖는 복소이차수체 \(F=\mathbb{Q}(\sqrt{d_F})\)의 원소일 때, 제1종타원적분 K에 대하여 다음이 성립한다 \[{K}(k)=\lambda\sqrt{\pi}\left(\prod_{m=1}^{|d_F|}\Gamma(\frac{m}{|d_F|})^{\left(\frac{d_F}{m}\right)}\right)^{\frac{w_{F}}{4h_{F}}}\] 여기서 \(\lambda\)는 적당한 대수적수.


메모


역사



관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료


관련논문



관련도서

  • [Borwein98]Pi and the AGM
    • Jonathan M. Borwein, Peter B. Borwein, Wiley-Interscience (July 13, 1998)
    • 26-28p, 51p, 67p, 139p, 298p


블로그

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'elliptic'}, {'LEMMA': 'integral'}]