제1종타원적분 K (complete elliptic integral of the first kind)

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

  • 제1종 완전타원적분

\[K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}=\int_0^1\frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\]

  • 타원곡선의 주기이다
  • \(k\)가 타원적분의 singular value 일때(타원적분의 singular value k), 일종타원적분의 값을 구하는 문제
    • 19세기부터 많이 연구된 타원 함수 이론의 고전적인 문제이며, complex multiplication 이론, 타원곡선의 periods 의 틀에서 이해할 수 있음
    • \(K(k)\)의 값을 감마함수의 값의 곱으로 표현
    • 아래에 몇가지 예가 제시


란덴변환

  • 다음 변환 공식을 타원적분에 대한 란덴 변환이라 함.

\[K(\frac{2\sqrt{k}}{1+k})=(1+k)K(k)\]

  • \(k'=\sqrt{1-k^2}\)라 두면

\[2K(\frac{1-k'}{1+k'})=(1+k')K(k)\]


초기하함수를 이용한 표현

\[K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)\] \[K(k) = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{(\frac{1}{2})_n(\frac{1}{2})_n}{n!(1)_n}k^{2n} = \frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)\]

(증명)

\[K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}} = \int_0^{\frac{\pi}{2}}\sum_{n=0}^{\infty}\frac{(\frac{1}{2})_n}{n!} k^{2n}\sin^{2n}\theta{d\theta} \]

\[\int_0^{\frac{\pi}{2}}\sin^{2n}\theta{d\theta}=\frac{\pi}{2}\frac{(\frac{1}{2})_n}{(1)_n}\] 이므로 (오일러 베타적분(베타함수) 항목 참조)

\[K(k) = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{(\frac{1}{2})_n(\frac{1}{2})_n}{n!(1)_n}k^{2n} = \frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)\]■


맴돌이군



singular values

  • 자연수 \(n \) 에 대하여, 다음을 만족시키는 \(k\)를 타원적분의 singular value 라 한다

\[\frac{K'}{K}(k):=\frac{K(\sqrt{1-k^2})}{K(k)}= \sqrt n \]

  • 타원적분 singular value k 항목 참조
  • 예\[\frac{K'}{K}(\frac{1}{\sqrt{2}})= 1\]\[\frac{K'}{K}(\sqrt{2}-1)= \sqrt{2}\]\[\frac{K'}{K}\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)= \sqrt{3}\]\[\frac{K'}{K}\left(3-2\sqrt{2}\right)= \sqrt{4}\]


special values

\(K(0) = \frac{\pi}{2}\)

\(K(1) = \infty\)

\(K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots\)

\(K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}}{2^{13/4}}B(\frac{1}{8},\frac{3}{8})=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}\)

\(K\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)=\frac{\sqrt[4]{3}\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt{\pi}}=2.768063\cdots\)

\(K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt[4]{3}\sqrt{\pi}}=1.5981420\cdots\)

\(K\left(3-2\sqrt{2}\right)=\frac{(2+\sqrt{2})\Gamma(\frac{1}{4})^2}{16\sqrt{\pi}}=1.58255\cdots\)

  • 더 자세한 목록은 [Zucker77] 또는 [Borwein98] 참조


\(\sqrt{-1}\)

정리

\[K(\frac{1}{\sqrt{2}})=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots \label{ellk1}\]


\(\sqrt{-2}\)

정리

\[K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}\]


\(\sqrt{-3}\)

정리

\[K\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)=\frac{\sqrt[4]{3}\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt{\pi}}=2.768063\cdots\]


증명

\(\cos \frac{\pi}{12}=\frac{\sqrt{6}+\sqrt{2}}{4}\), \(\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}\) 이므로 타원곡선의 주기에서 얻은 결과를 활용하면, 다음을 얻는다 \[K\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)=\frac{1}{2}\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 - \sqrt{3}u + 1)}}\] 여기서 \(v=\sqrt{3}u-1\) 으로 치환하면, \(u(u^2 - \sqrt{3}u+ 1) = 3^{-3/2}(1 + v^3)\) 따라서 \[ \begin{aligned} \int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 - \sqrt{3}u + 1)}}&=\sqrt[4]{3}\int_{-1}^{\infty} \frac{dv}{\sqrt{v^3+1}}=\sqrt[4]{3}(\int_{-1}^{0} \frac{dv}{\sqrt{v^3+1}}+\int_{0}^{\infty} \frac{dv}{\sqrt{v^3+1}}) \\ &=\sqrt[4]{3}(\int_{0}^{1} \frac{dv}{\sqrt{1-v^3}}+\int_{0}^{\infty} \frac{dv}{\sqrt{1+v^3}}) \\ &=\frac{\sqrt[4]{3}\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{2\sqrt{\pi}}=5.536129 \cdots \end{aligned} \] 마지막에서 다음을 이용하였음. (이에 대한 증명은 오일러 베타적분(베타함수) 항목 참조) \[\int_{0}^{1} \frac{dv}{\sqrt{1-v^3}}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{6\sqrt{\pi}}\] \[\int_{0}^{\infty} \frac{dv}{\sqrt{1+v^3}}=\frac{ \Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{3\sqrt{\pi }}\] ■

정리

\[K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt[4]{3}\sqrt{\pi}}=1.5981420\cdots\]

증명1

다음 사실을 이용 \[\frac{K'}{K}\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)= \sqrt{3}\] ■


증명2

\(\cos \frac{5\pi}{12}=\frac{\sqrt{6}-\sqrt{2}}{4}\), \(\cos \frac{5\pi}{6}=-\frac{\sqrt{3}}{2}\) 이므로 타원곡선의 주기의 결과를 활용하면 다음을 얻는다 \[K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{1}{2}\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 + \sqrt{3}u + 1)}}\] 여기서 \(v=\sqrt{3}u+1\) 으로 치환하면, \(u(u^2 + \sqrt{3}u+ 1) = 3^{-3/2}(v^3-1)\) 따라서 \[\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2+ \sqrt{3}u + 1)}}=\sqrt[4]{3}\int_{1}^{\infty} \frac{dv}{\sqrt{v^3-1}}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{2\sqrt[4]{3}\sqrt{\pi}}=3.1962840\cdots\] ■


\(\sqrt{-4}\)

정리

\[K\left(3-2\sqrt{2}\right)=\frac{(2+\sqrt{2})\Gamma(\frac{1}{4})^2}{16\sqrt{\pi}}=1.58255\cdots\]

증명

란덴변환(Landen's transformation) \[K(\frac{2\sqrt{k}}{1+k})=(1+k)K(k)\] 을 이용하자. 여기서 \(k=3-2\sqrt{2}\)라 두면, 다음을 얻는다 \[\frac{2\sqrt{k}}{1+k}=\frac{1}{\sqrt{2}}\] 따라서 다음이 성립한다 \[K(\frac{1}{\sqrt{2}})=(4-2\sqrt{2})K(3-2\sqrt{2})\] \ref{ellk1}로부터 다음을 얻는다 \[K\left(3-2\sqrt{2}\right)=\frac{(2+\sqrt{2})\Gamma(\frac{1}{4})^2}{16\sqrt{\pi}}=1.58255\cdots\] ■


Chowla-셀베르그의 정리

정리

\(k\)에 대하여, 다음의 값 \[i\frac{K'}{K}(k):=i\frac{K(\sqrt{1-k^2})}{K(k)}\] 이 \(d_F\)를 판별식으로 갖는 복소이차수체 \(F=\mathbb{Q}(\sqrt{d_F})\)의 원소일 때, 제1종타원적분 K에 대하여 다음이 성립한다 \[{K}(k)=\lambda\sqrt{\pi}\left(\prod_{m=1}^{|d_F|}\Gamma(\frac{m}{|d_F|})^{\left(\frac{d_F}{m}\right)}\right)^{\frac{w_{F}}{4h_{F}}}\] 여기서 \(\lambda\)는 적당한 대수적수.


메모


역사



관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료


관련논문



관련도서

  • [Borwein98]Pi and the AGM
    • Jonathan M. Borwein, Peter B. Borwein, Wiley-Interscience (July 13, 1998)
    • 26-28p, 51p, 67p, 139p, 298p


블로그

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'elliptic'}, {'LEMMA': 'integral'}]