직교다항식

수학노트
둘러보기로 가기 검색하러 가기

개요

  • 직교다항식(orthogonal polynomials)
    • 직교성과 완비성
    • 3항 점화식 (3-term recurrence relation) 연분수와 관계
    • 삼각함수 곱셈공식의 일반화 linearization of products
    • 스텀-리우빌 문제

 



메모


관련된 항목들


메모

  • Dumitriu, Ioana, Alan Edelman, and Gene Shuman. “MOPS: Multivariate Orthogonal Polynomials (symbolically).” arXiv:math-ph/0409066, September 23, 2004. http://arxiv.org/abs/math-ph/0409066.


리뷰, 에세이, 강의노트

  • Wasson, Ryan D., and Robert Gilmore. 2013. “An Overview of the Relationship between Group Theory and Representation Theory to the Special Functions in Mathematical Physics.” arXiv:1309.2544 [math-Ph], September. http://arxiv.org/abs/1309.2544.
  • Ehrenpreis, Leon. 2010. “Special Functions.” Inverse Problems and Imaging 4 (4): 639–47. doi:10.3934/ipi.2010.4.639.
  • The History and Future of Special Functions Stephen Wolfram, 2005
  • Kalnins, Special functions, Lie theory and partial differential equations, 1997
  • Koekoek, Roelof, and Rene F. Swarttouw. "The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue." arXiv preprint math/9602214 (1996). http://arxiv.org/abs/math/9602214
  • Kirillov, A. A., & Etingof, P. I. I. (1994). A unified representation-theoretic approach to special functions. Functional Analysis and Its Applications, 28(1), 73-76.


관련논문

  • Koornwinder, Tom H. “Quadratic Transformations for Orthogonal Polynomials in One and Two Variables.” arXiv:1512.09294 [math], December 31, 2015. http://arxiv.org/abs/1512.09294.
  • Odake, Satoru. “Recurrence Relations of the Multi-Indexed Orthogonal Polynomials : III.” arXiv:1509.08213 [hep-Th, Physics:math-Ph, Physics:nlin], September 28, 2015. http://arxiv.org/abs/1509.08213.
  • Borzov, V. V., and E. V. Damaskinsky. ‘Comment on “On the Dimensions of the Oscillator Algebras Induced by Orthogonal Polynomials” [J. Math. Phys. {\bf 55}, 093511 (2014)]’. arXiv:1503.08202 [math-Ph], 27 March 2015. http://arxiv.org/abs/1503.08202.
  • Honnouvo, G., and K. Thirulogasanthar. ‘On the Dimensions of the Oscillator Algebras Induced by Orthogonal Polynomials’. arXiv:1305.2509 [math-Ph], 11 May 2013. http://arxiv.org/abs/1305.2509.
  • Dimitrov, Dimitar, and Yuan Xu. “Slater Determinants of Orthogonal Polynomials.” arXiv:1412.0326 [math-Ph], November 30, 2014. http://arxiv.org/abs/1412.0326.
  • Jafarov, E. I., N. I. Stoilova, and J. Van der Jeugt. ‘On a Pair of Difference Equations for the $_4F_3$ Type Orthogonal Polynomials and Related Exactly-Solvable Quantum Systems’. arXiv:1411.6125 [math-Ph], 22 November 2014. http://arxiv.org/abs/1411.6125.