"초기하급수의 합공식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
  
 
+
  
 
==Chu-Vandermonde 공식==
 
==Chu-Vandermonde 공식==
7번째 줄: 7번째 줄:
 
<math>\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}</math>
 
<math>\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}</math>
  
아래 가우스 공식에서 <math>a=-n</math>인 경우에 얻어진다
+
아래 가우스 공식에서 <math>a=-n</math>인 경우에 얻어진다
  
 
+
  
 
+
  
 
==가우스 공식==
 
==가우스 공식==
20번째 줄: 20번째 줄:
 
  \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2}+\frac{a}{2}+\frac{b}{2})}{\Gamma(\frac{1}{2}+\frac{a}{2})\Gamma(\frac{1}{2}+\frac{b}{2})}</math>
 
  \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2}+\frac{a}{2}+\frac{b}{2})}{\Gamma(\frac{1}{2}+\frac{a}{2})\Gamma(\frac{1}{2}+\frac{b}{2})}</math>
  
 
+
  
 
+
  
== 쿰머 공식==
+
== 쿰머 공식==
  
 <math>\,_2F_1(a,b;1+a-b;-1)=\dfrac{\Gamma(1+a-b)\,\Gamma(1+\frac{1}{2}a)}{\Gamma(1+a)\Gamma(1+\frac{1}{2}a-b)}</math>
+
<math>\,_2F_1(a,b;1+a-b;-1)=\dfrac{\Gamma(1+a-b)\,\Gamma(1+\frac{1}{2}a)}{\Gamma(1+a)\Gamma(1+\frac{1}{2}a-b)}</math>
  
 
+
  
 
+
  
 
==딕슨 공식==
 
==딕슨 공식==
38번째 줄: 38번째 줄:
 
  {\Gamma(1+a)\Gamma(1+a-b-c)\Gamma(1+a/2-b)\Gamma(1+a/2-c)}</math>
 
  {\Gamma(1+a)\Gamma(1+a-b-c)\Gamma(1+a/2-b)\Gamma(1+a/2-c)}</math>
  
 
+
  
 
+
  
== Bailey 공식==
+
== Bailey 공식==
  
 
<math>\;_2F_1 \left(a,1-a;c;\frac{1}{2}\right)=
 
<math>\;_2F_1 \left(a,1-a;c;\frac{1}{2}\right)=
 
  \frac{\Gamma(\frac{c}{2})\Gamma(\frac{1}{2}+\frac{c}{2})}{\Gamma(\frac{c}{2}+\frac{a}{2})\Gamma(\frac{1}{2}+\frac{c}{2}-\frac{a}{2})}</math>
 
  \frac{\Gamma(\frac{c}{2})\Gamma(\frac{1}{2}+\frac{c}{2})}{\Gamma(\frac{c}{2}+\frac{a}{2})\Gamma(\frac{1}{2}+\frac{c}{2}-\frac{a}{2})}</math>
  
 
+
  
 
+
  
 
+
  
 
==Pfaff 공식==
 
==Pfaff 공식==
  
 <math>\,_3F_2(a,b,-n;c,1+a+b-c-n;1)=\dfrac{(c-a)_{n}(c-b)_{n}}{(c)_{n}(c-a-b)_{n}}</math>
+
<math>\,_3F_2(a,b,-n;c,1+a+b-c-n;1)=\dfrac{(c-a)_{n}(c-b)_{n}}{(c)_{n}(c-a-b)_{n}}</math>
  
 
+
  
 
+
  
 
==Dougall 공식==
 
==Dougall 공식==
69번째 줄: 69번째 줄:
 
http://en.wikipedia.org/wiki/Bilateral_hypergeometric_series#Dougall.27s_bilateral_sum
 
http://en.wikipedia.org/wiki/Bilateral_hypergeometric_series#Dougall.27s_bilateral_sum
  
 
+
  
 
+
  
 
==역사==
 
==역사==
  
 
+
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사 연표]]
 
* [[수학사 연표]]
  
 
+
  
 
==메모==
 
==메모==
  
*  [http://www.mathematik.uni-kassel.de/%7Ekoepf/hyper.html http://www.mathematik.uni-kassel.de/~koepf/hyper.html]
+
* [http://www.mathematik.uni-kassel.de/%7Ekoepf/hyper.html http://www.mathematik.uni-kassel.de/~koepf/hyper.html]
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
95번째 줄: 95번째 줄:
  
  
 
+
  
==사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/

2020년 12월 28일 (월) 03:58 판

개요

Chu-Vandermonde 공식

\(\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}\)

아래 가우스 공식에서 \(a=-n\)인 경우에 얻어진다



가우스 공식

\(\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\)

\(\;_2F_1 \left(a,b;\frac{1}{2}+\frac{a}{2}+\frac{b}{2};\frac{1}{2}\right) = \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2}+\frac{a}{2}+\frac{b}{2})}{\Gamma(\frac{1}{2}+\frac{a}{2})\Gamma(\frac{1}{2}+\frac{b}{2})}\)



쿰머 공식

\(\,_2F_1(a,b;1+a-b;-1)=\dfrac{\Gamma(1+a-b)\,\Gamma(1+\frac{1}{2}a)}{\Gamma(1+a)\Gamma(1+\frac{1}{2}a-b)}\)



딕슨 공식

\(\;_3F_2 (a,b,c;1+a-b,1+a-c;1)= \frac{\Gamma(1+a/2)\Gamma(1+a/2-b-c)\Gamma(1+a-b)\Gamma(1+a-c)} {\Gamma(1+a)\Gamma(1+a-b-c)\Gamma(1+a/2-b)\Gamma(1+a/2-c)}\)



Bailey 공식

\(\;_2F_1 \left(a,1-a;c;\frac{1}{2}\right)= \frac{\Gamma(\frac{c}{2})\Gamma(\frac{1}{2}+\frac{c}{2})}{\Gamma(\frac{c}{2}+\frac{a}{2})\Gamma(\frac{1}{2}+\frac{c}{2}-\frac{a}{2})}\)




Pfaff 공식

\(\,_3F_2(a,b,-n;c,1+a+b-c-n;1)=\dfrac{(c-a)_{n}(c-b)_{n}}{(c)_{n}(c-a-b)_{n}}\)



Dougall 공식

http://dx.doi.org/10.1016/0022-247X(90)90375-P

\({}_2H_2(a,b;c,d;1)= \sum_{-\infty}^\infty\frac{(a)_n(b)_n}{(c)_n(d)_n}= \frac{\Gamma(d)\Gamma(e)\Gamma(1-a)\Gamma(1-b)\Gamma(c+d-a-b-1)}{\Gamma(c-a)\Gamma(c-b)\Gamma(d-a)\Gamma(d-b)} \)

http://en.wikipedia.org/wiki/Bilateral_hypergeometric_series#Dougall.27s_bilateral_sum



역사


메모



관련된 항목들



사전 형태의 자료


관련논문

  • Dunkl, Charles F., and George Gasper. “The Sums of a Double Hypergeometric Series and of the First m+1 Terms of 3F2(a,b,c;(a+b+1)/2,2c;1) When c = -M Is a Negative Integer.” arXiv:1412.4022 [math], December 12, 2014. http://arxiv.org/abs/1412.4022.
  • Wang, Chenying, and Xiaojing Chen. ‘A New Proof for Gasper’s Nonterminating Cubic \(_7F_6\)-Series Summation Identity’. arXiv:1410.5636 [math], 21 October 2014. http://arxiv.org/abs/1410.5636.
  • Vyas, Yashoverdhan, and Kalpana Fatawat. “Extensions of the Classical Theorems for Very Well-Poised Hypergeometric Functions.” arXiv:1410.3241 [math], October 13, 2014. http://arxiv.org/abs/1410.3241.