카탈란 수 (Catalan numbers)

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

  • 조합수학에서 빈번하게 등장하는 수열의 하나
  • (0,0)에서 (n,n)까지 격자점을 지나는 최단거리의 경로 중에서 직선 \(y=x\)를 넘지 않는 경우의 수
  • \(n\geq 0 \)에 대하여 다음과 같이 주어짐\[c_n = \frac{1}{n+1}{2n\choose n} = \frac{(2n)!}{(n+1)!\,n!}\]
  • 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012,…

카탈란 수열(Catalan numbers)1.png



점화식

  • 다음의 점화식이 성립한다

\(c_{n+1}=c_0c_n+c_1c_{n-1}+\cdots+c_nc_0 \label{rec}\)

\[ (n+2)c_{n+1}+(-4 n-2)c_{n}=0 \]



생성함수

  • 기본적인 내용에 대해서는 생성함수 항목을 참조
  • 카탈란 수열의 생성함수는 다음과 같이 주어짐

\[G(x)= c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n + \cdots=\frac{1-\sqrt{1-4x}}{2x}\]

증명

생성함수를 다음과 같이 두자 \[G(x)= c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n + \cdots\] 다음을 얻을 수 있다 \[x G(x)^2= (c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n + \cdots)^2=c_0^2x+(c_0c_1+c_1c_0)x^2+(c_0c_2+c_1c_1+c_2c_0)x^3+\cdots=G(x)-1\] 여기에 \ref{rec} 을 이용하면, \[x G(x)^2-G(x)+1=0\] 따라서 \[G(x)= \frac{1-\sqrt{1-4x}}{2x}\]■



점근 급수

  • 멱급수 \((1-x)^{-1/2}=\sum_{n=0}^{\infty} a_n x^n\)의 계수는 다음과 같은 점근 급수를 갖는다

\[ a_n \sim \frac{1}{\sqrt{\pi n}}\left(1-\frac{1}{8 n}+\frac{1}{128 n^2}+\frac{5}{1024 n^3}+O(\frac{1}{n^4})\right) \]

  • 카탈란 상수는 다음을 만족한다

\[ c_n=\frac{4^n}{n+1}a_n \sim \frac{4^n}{(n+1)\sqrt{\pi n}}\left(1-\frac{1}{8 n}+\frac{1}{128 n^2}+\frac{5}{1024 n^3}+O(\frac{1}{n^4})\right) \]

\[c_{n}\sim \frac{4^{n}}{\sqrt{\pi n}(n+1)}(1-\frac{1}{8n})\]


격자경로와 카탈란 수

증명의 아이디어

  • (0,0)에서 (n,n)까지 격자점을 지나는 최단거리의 경로의 수

\[{2n \choose n}\]

  • (0,0)에서 (n,n)까지 격자점을 지나는 최단거리의 경로 중에서 직선 \(y=x\)를 넘지 않는 경우의 수 (카탈란 수)

\[\frac{1}{n+1}{2n \choose n}\]

  • (0,0)에서 (n,n)까지 갈 수 있는 모든 방법의 수를 구한 다음, 그 중에서 y=x를 넘어서 가는 방법의 수를 빼면 된다. 이 방법의 수가 얼마가 되겠느냐를 구하는 과정에서 일대일대응이 등장한다.


일단계

(0,0)에서 (n,n)까지 갈 수 있는 모든 방법의 수를 구해 보자. 이것은 매우 간단한 문제인데, 일대일대응을 통하여 문제를 풀어보자. 각 경로에서 x축으로 움직이는 것을 X로 표시하고 y축으로 움직이는 것을 Y로 표시하면, 각 경로는 X와Y를 n개 씩 쓴 문자열로 표현된다. 이것이 일대일 대응이다. 각각의 경로는 서로 다른 문자열로 표현될테고, 문자열은 또한 어떤 경로를 표현할테니까 말이다. 따라서 죽 늘어놓은 2n개 중에서 n개를 골라 X라고 써 놓으면 나머지 위치는 Y가 될 것이고 결정될 것이고, 그런 방법의 수는 \({2n \choose n}\)이다. 즉, (0,0)에서 (n,n)까지 갈 수 있는 모든 방법의 수는 \({2n \choose n}\)이다.


이단계

이제 직선 \(y=x\)를 넘어서서 가는 경로의 수를 구하자. 경로는 반드시 \(y=x+1\)과 만나게 될 것이다.

카탈란 수열(Catalan numbers)meeting.jpg

이 때, 이 경로의 \((0,0)\)에서부터 \(y=x+1\)과 처음으로 만나는 점까지를 잘라서, \(y=x\)에 대칭시키자.

카탈란 수열(Catalan numbers)Symmetrization.jpg

그리고 나머지 경로를 평행이동시켜 대칭이동된 경로에 갖다붙이자.

카탈란 수열(Catalan numbers)translation.jpg

그 결과는 \((0,0)\)에서 출발하여 \((n+1,n-1)\)에 도착하는 경로일 것이다.

카탈란 수열(Catalan numbers)result.jpg

위에서 한 작업은 서로 다른 두 경로의 집합 사이에 어떤 대응을 만들어 낸 것이다. 이 대응은 일대일 대응이다. 일대일대응임을 보이기 위해서는 두 가지를 생각해야 한다. 첫번째는, 서로 다른 것으로 대응되었는지를 살피고, 두번째는 공역의 모든 원소가 대응되었는지를 살피는 것이다.

\(y=x\)를 넘어서서 가는 경로는 \((0,0)\)에서 \((n+1,n-1)\)까지 가는 경로와 일대일 대응되므로 그 개수는 \({2n \choose n+1}\)이다.

따라서 처음에 제기했던 문제의 답은 다음과 같다 \[{2n \choose n}-{2n \choose n+1}=\frac{1}{n+1}{2n \choose n}\] ■




적분표현

  • \(c_n=\int_{0}^{1} 2^{2n+1}{\cos^{2n} \pi x}\, {\sin^2 \pi x}\,dx\)


역사



메모


관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료


리뷰, 에세이, 강의노트


관련도서

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'catalan'}, {'LEMMA': 'number'}]