"코쉬-리만 방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
2번째 줄: 2번째 줄:
  
 
*  복소해석함수 <math>f (x + iy) = u(x,y) + iv(x,y)</math> 의 실수부와 허수부가 만족하는 조건
 
*  복소해석함수 <math>f (x + iy) = u(x,y) + iv(x,y)</math> 의 실수부와 허수부가 만족하는 조건
$$
+
:<math>
 
\left\{  
 
\left\{  
 
\begin{array}{c}  
 
\begin{array}{c}  
9번째 줄: 9번째 줄:
 
\end{array}  
 
\end{array}  
 
\right.
 
\right.
$$
+
</math>
 
* 복소평면(또는 그 부분집합)을 유클리드 메트릭이 주어진 리만다양체로 생각할 때, 각도를 보존하는 [[등각 사상 (conformal mapping)]] 임을 말해준다
 
* 복소평면(또는 그 부분집합)을 유클리드 메트릭이 주어진 리만다양체로 생각할 때, 각도를 보존하는 [[등각 사상 (conformal mapping)]] 임을 말해준다
 
 
 
 

2020년 11월 13일 (금) 21:25 판

개요

  • 복소해석함수 \(f (x + iy) = u(x,y) + iv(x,y)\) 의 실수부와 허수부가 만족하는 조건

\[ \left\{ \begin{array}{c} \frac{\partial u}{\partial x} &=&\frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} &=&-\frac{\partial v}{\partial x} \end{array} \right. \]

  • 복소평면(또는 그 부분집합)을 유클리드 메트릭이 주어진 리만다양체로 생각할 때, 각도를 보존하는 등각 사상 (conformal mapping) 임을 말해준다

 

코쉬-리만 연산자

 

\(\frac{\partial}{\partial z} = \frac{1}{2} \Bigl( \frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \Bigr)\)

 

\(\frac{\partial}{\partial\bar{z}}= \frac{1}{2} \Bigl( \frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \Bigr)\)


역사

 

 

 

메모

 

 

 

관련된 항목들


 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트