코쉬 행렬과 행렬식

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

  • 행렬 \(A=({\frac{1}{x_i-y_j}})_{1\le i,j\le n}\)를 크기 n인 코쉬 행렬이라 함
  • 행렬식

\[ \det \left(\frac{1}{x _i-y _j}\right) _{1\le i,j \le n}=(-1)^{\binom{n}{2}}\frac{\prod _{1\le i < j\le n} (x_j-x _i)(y _j-y _i)}{\prod _{i,j=1}^n (x _i-y _j)} \] \[ \det \left(\frac{1}{x _i+y _j}\right) _{1\le i,j \le n}=\frac{\prod _{1\le i < j\le n} (x_j-x _i)(y _j-y _i)}{\prod _{i,j=1}^n (x _i+y _j)} \]


n=1인 경우

  • \(\left( \begin{array}{c} \frac{1}{x_1-y_1} \end{array} \right)\)


n=2인 경우

  • 코쉬 행렬

\[\left( \begin{array}{cc} \frac{1}{x_1-y_1} & \frac{1}{x_1-y_2} \\ \frac{1}{x_2-y_1} & \frac{1}{x_2-y_2} \end{array} \right)\]

  • 행렬식

\[ \frac{\left(x_1-x_2\right) \left(y_1-y_2\right)}{\left(x_1-y_1\right) \left(y_1-x_2\right) \left(x_1-y_2\right) \left(x_2-y_2\right)} \]

n=3인 경우

  • 코쉬 행렬은

\[\left( \begin{array}{ccc} \frac{1}{x_1-y_1} & \frac{1}{x_1-y_2} & \frac{1}{x_1-y_3} \\ \frac{1}{x_2-y_1} & \frac{1}{x_2-y_2} & \frac{1}{x_2-y_3} \\ \frac{1}{x_3-y_1} & \frac{1}{x_3-y_2} & \frac{1}{x_3-y_3} \end{array} \right)\]

  • 행렬식은

\[-\frac{\left(-x_1+x_2\right) \left(-x_1+x_3\right) \left(-x_2+x_3\right) \left(y_1-y_2\right) \left(y_1-y_3\right) \left(y_2-y_3\right)}{\left(x_3-y_1\right) \left(-x_1+y_1\right) \left(-x_2+y_1\right) \left(x_2-y_2\right) \left(x_3-y_2\right) \left(-x_1+y_2\right) \left(x_1-y_3\right) \left(x_2-y_3\right) \left(x_3-y_3\right)}\]


n=4인 경우

  • 코쉬 행렬은

\[\left( \begin{array}{cccc} \frac{1}{x_1-y_1} & \frac{1}{x_1-y_2} & \frac{1}{x_1-y_3} & \frac{1}{x_1-y_4} \\ \frac{1}{x_2-y_1} & \frac{1}{x_2-y_2} & \frac{1}{x_2-y_3} & \frac{1}{x_2-y_4} \\ \frac{1}{x_3-y_1} & \frac{1}{x_3-y_2} & \frac{1}{x_3-y_3} & \frac{1}{x_3-y_4} \\ \frac{1}{x_4-y_1} & \frac{1}{x_4-y_2} & \frac{1}{x_4-y_3} & \frac{1}{x_4-y_4} \end{array} \right)\]



역사



메모


관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료


관련논문

  • Ishikawa, Masao, Soichi Okada, Hiroyuki Tagawa, and Jiang Zeng. “Generalizations of Cauchy’s Determinant and Schur’s Pfaffian.” Advances in Applied Mathematics 36, no. 3 (2006): 251–87. doi:10.1016/j.aam.2005.07.001.
  • Chen, William Y. C., Christian Krattenthaler, and Arthur L. B. Yang. “The Flagged Cauchy Determinant.” Graphs and Combinatorics 21, no. 1 (2005): 51–62. doi:10.1007/s00373-004-0593-9.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'cauchy'}, {'LEMMA': 'matrix'}]