콜라츠 추측 (3n+1 문제)

수학노트
둘러보기로 가기 검색하러 가기

개요[편집]

  • \(C:\mathbb{N}\to \mathbb{N}\)을 다음과 같이 정의

\[ C(n)= \begin{cases} 3n+1 & \mbox{ if }n \in 2\mathbb{Z}+1 \\ n/2 & \mbox{ if } n\in2\mathbb{Z} \end{cases} \]

  • 추측 : 임의의 자연수 \(n\)에 대하여, \(\underbrace{(C\circ \cdots \circ C)}_\text{k-times}(n)=1\)를 만족하는 적당한 \(k\geq 1\)를 찾을 수 있다
  • \(T:\mathbb{N}\to \mathbb{N}\)를 사용하기도 함

\[ T(n)= \begin{cases} (3n+1)/2 & \mbox{ if }n \in 2\mathbb{Z}+1 \\ n/2 & \mbox{ if } n\in2\mathbb{Z} \end{cases} \]

[편집]

  • \(n=7\)의 경우

\[ 7\overset{C}{\mapsto} 22\overset{C}{\mapsto} 11\overset{C}{\mapsto} 34\overset{C}{\mapsto} 17\overset{C}{\mapsto} 52\overset{C}{\mapsto} 26\overset{C}{\mapsto} 13\overset{C}{\mapsto} 40\overset{C}{\mapsto} 20\overset{C}{\mapsto} 10\overset{C}{\mapsto} 5\overset{C}{\mapsto} 16\overset{C}{\mapsto} 8\overset{C}{\mapsto} 4\overset{C}{\mapsto} 2\overset{C}{\mapsto} 1 \]

  • \(n=17\)의 경우

\[ 17\overset{C}{\mapsto} 52\overset{C}{\mapsto} 26\overset{C}{\mapsto} 13\overset{C}{\mapsto} 40\overset{C}{\mapsto} 20\overset{C}{\mapsto} 10\overset{C}{\mapsto} 5\overset{C}{\mapsto} 16\overset{C}{\mapsto} 8\overset{C}{\mapsto} 4\overset{C}{\mapsto} 2\overset{C}{\mapsto} 1 \]


매스매티카 파일 및 계산 리소스[편집]



사전 형태의 자료[편집]


리뷰논문, 에세이, 강의노트[편집]

메타데이터[편집]

위키데이터[편집]