타원적분론 입문

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 5월 28일 (금) 07:11 판
둘러보기로 가기 검색하러 가기
개요

 

 

유리함수의 적분

\(R(x,y)\)를 \(x,y\)의 유리함수라고 하자.

유리함수는 부분분수로 분해하여 그 부정적분을 구할 수 있다.

 

 

삼각함수의 적분

삼각함수의 적분은 유리함수의 적분으로 바꿀 수 있다.

 

\(R(x,y)\)는 \(x,y\)의 유리함수라고 가정

 

\(R(\cos x, \sin x)\)의 적분

  • 다음과 같은 치환적분을 사용
    \(t=\tan \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1+t^2}\), \(\sin x=\frac{2t}{1+t^2}\), \(\cos x=\frac{1-t^2}{1+t^2}\)
    \(\int R(\cos x, \sin x) \,dx= \int R(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})\frac{2}{1+t^2}\,dt\)

 

\(R(\cosh x, \sinh x)\)의 적분

  • 다음과 같은 치환적분을 사용
    \(t=\tanh \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1-t^2}\), \(\sinh x=\frac{2t}{1-t^2}\), \(\cosh x=\frac{1+t^2}{1-t^2}\)
    \(\int R(\cosh x, \sinh x) \,dx= \int R(\frac{1+t^2}{1-t^2}, \frac{2t}{1-t^2})\frac{2}{1-t^2}\,dt\)

 

 

이차식에 제곱근이 씌워진 적분

 

  • \(R(x,\sqrt{1-x^2})\)의 적분
    \(x=\cos u\) 치환을 사용하면, \(R'(\cos x, \sin x)\) 의 적분으로 변화
  •  
  • \(R(x,\sqrt{x^2-1})\)의 적분
    \(x=\cosh u\) 치환을 사용하면, \(R'(\cosh x, \sinh x)\)의 적분으로 변화
  •  
  • \(R(x,\sqrt{x^2+1})\)의 적분
    \(x=\sinh u\) 치환을 사용하면, \(R'(\cosh x, \sinh x)\)의 적분으로 변화
  •  
  • \(R(x,\sqrt{ax^2+bx+c})\)의 적분
    \(ax^2+bx+c=\frac{1}{a}\{(ax+b)^2+{ac-b^2}}\}\) 으로 쓴 다음
  • \(ac-b^2\)와 \(a\)의 부호에 따라, 적당히 치환하여 위의 경우로 끌고가면 끝.

 

 

곡선과 유리함수를 이용한 매개화

이렇게 각각의 경우에 패턴에 따라서, 요렇게 풀고, 저렇게 풀고 하는 방법을 아는 것으로 끝난다면, 이것은 공돌이들의 미적분학 이해와 다를 수 없다. 
중요한 것은 각각의 패턴을 관통하는 통일적인 원리의 이해인데, 이런 것이 바른 학습이라고 하겠다. 

\(\int R(x,\sqrt{ax^2+bx+c})\,dx\) 형태의 적분이 주어져 있을때, 이러한 삼각치환들이 잘 되는 이유는 ’이차곡선은 유리함수로 매개화 가능’ 하기 때문이다. 

 

즉, \(y^2=ax^2+bx+c\) 라는 곡선을, 유리함수 \(f,g\)를 사용하여 \(x=f(t), y=g(t)\) 형태로 매개화할 수 있기 때문이다. 

가령 단위원의 경우를 보자. (원의 매개화와 삼각함수의 탄생피타고라스 쌍 참조)

단위원 \(x^2+y^2=1\)의 점들은 다음과 같이 유리함수를 통하여 매개화할 수 있다.

\(x=\frac{1-t^2}{1+t^2}\), \(y=\frac{2t}{1+t^2}\)

 

 

오일러의 적분정리

위의 모든 논의를 요약하면, 다음과 같은 '오일러의 적분정리'를 얻는다.  (오일러치환 항목 참조)

 

(정리) 오일러의 적분정리

임의의 2변수 유리함수 \(R(x,y)\) 에 대하여, \(\int R(x,\sqrt{ax^2+bx+c})\,dx\) 는 언제나 초등함수로 표현이 가능하다.

 

 

 

타원적분이란?

그러면 이제 제곱근 기호 안에 들어가는 차수가 높아지는  \(\int \frac{dx}{\sqrt{1-x^4}}\) 와 같은 경우 (렘니스케이트(lemniscate) 곡선과 타원적분)는 어떨까?

\(y^2=1-x^4\) 를 유리함수로 매개화할 수 있다면, 부정적분을 구할 수 있지 않을까?
하지만 애석하게도 그러한 유리함수로의 매개화는 존재하지 않는다!!!

이러한 적분이 바로 19세기의 수학계를 뜨겁게 달구었던 타원적분이다. 

일반적으로 다음과 같은 형태로 주어지는 적분을 타원적분이라 부른다. 

 

\(\int R(x,y)\,dx\), 여기서 \(R(x,y)\)는 \(x,y\)의 유리함수, \(y^2\)= 중근을 갖지 않는 \(x\)의 3차식 또는 4차식. 즉 다음과 같은 형태의 적분

 

\(\int R(x,\sqrt{ax^3+bx^2+cx+d}) \,dx\) 또는

\(\int R(x,\sqrt{ax^4+bx^3+cx^2+dx+e}) \,dx\)

 

 

역사적으로 타원 둘레의 길이를 구하는 적분에서 그 이름이 기원했다고 전해진다. 

타원  \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)의 둘레의 길이는 \(4aE(k)\) 로 주어지기 때문이다. 여기서 \(k,E(k)\) 는 다음과 같다. 

\(k=\sqrt{1-\frac{b^2}{a^2}}\)

\(E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\)

 

타원적분이라는 말은 타원의 둘레의 길이를 구하는 문제로부터 기원했다고 전해진다.

 

타원  \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)의 둘레의 길이가 \(4aT(k)\) 로 주어지기 때문이다. 여기서 \(k,T(k)\) 는 다음과 같다. 

 

\(k=\sqrt{1-\frac{b^2}{a^2}}\)

\(T(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\)

이렇게 하여 이 글을 착실하게 읽은 사람들은 모두 타원적분의 세계로 가는 문 앞에 서게 되었다. 이렇듯 삼각치환을 가르칠 때에도 아이들을 넓고 넓은 타원적분의 세계로 꼬셔올 수 있는 순간은 존재한다. 

 

 

위상수학의 역할

오일러의 적분 정리가 성립하는 이유는, 근본적으로 2차곡선이 일변수의 유리함수로 매개화가 가능하기 때문이고, 이것은 위상수학의 개념을 가지고 와서야 비로소 명료하게 이해될 수 있다.

초등함수로 표현할 수 있는 적분 \(\int \frac{dx}{\sqrt{1-x^2}}\) 와 초등함수로는 표현되지 않는 적분 \(\int \frac{dx}{\sqrt{1-x^4}}\) 사이의 넘을 수 없는 세계는, 이들 적분과 관련되어 있는 곡면의 구멍이 몇 개인가로 나누어진다.

무미건조한 미적분학 책을 통해서는 도저히 배울 수 없는, 부정적분과 위상수학의 보이지 않는 관계!

 

 

이 공부에는 유비(analogy)적인 생각이 매우 유용하다. 

무리함수적분 사인함수 원의 발견

\(\int_0^P{\frac{1}{\sqrt{1-z^2}}}dz\)

이 함수를 제대로 이해하려면, 적어도 세 가지를 이해해야 한다.

첫번째

\(\frac{1}{\sqrt{1-z^2}}\) 는 어떤 공간에 정의된 함수인가? 이것은 2 sheeted 리만 곡면에 정의된 함수이다.

두번째

\(\int_0^P{\frac{1}{\sqrt{1-z^2}}}dz\) 는 그럼 또 어떤 공간에 정의된 함수인가?

P 역시 2 sheeted 리만 곡면에서 정의되어 있다. 다만 이 값은 경로에 의존할 것이다. 

한가지 달라지는 것은 P는 무한대 점이 될 수 없다는 것이다. 

세번째

이 함수의 공역은 무엇인가?

\(\int_0^x{\frac{1}{\sqrt{1-x^2}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^2}}}dx=\int_0^{x\sqrt{1-y^2}+y\sqrt{1-x^2}}{\frac{1}{\sqrt{1-x^2}}}dx\)

\(\arcsin x+\arcsin y=\arcsin(x\sqrt{1-y^2}+y\sqrt{1-x^2})\)

\(\sin\left(x+y\right)=\sin x\cos y +\cos x \sin y\)

이렇게 정의역과 공역을 명확하게 하려는 노력에서 일차적으로 리만곡면이 발견되었고, 아벨-자코비의 이론이 싹트게 된다. 

타원적분 타원함수 토러스의 발견

복소함수와 브랜치컷

하나의 브랜치가 고정되었다고 하자.  

\(w=f(z)\)

\((z,w)\) 는 리만곡면의 하나의 점을 나타내는 방식이다. 

 \(\int R(x,\sqrt{ax^2+bx+c})\,dx\) 형태의 적분이 주어져 있을때, 이러한 삼각치환들이 잘 되는 이유는 '이차곡선은 유리함수로 매개화 가능' 하기 때문이다. 

즉, \(y^2=ax^2+bx+c\) 라는 곡선을, 유리함수 \(f,g\)를 사용하여 \(x=f(t), y=g(t)\) 형태로 매개화할 수 있기 때문이다. 

매개화가 왜 되는지는, 나중에 다시 쓰도록 하자. 

그러면 루트 안에 들어가는 차수가 높아지는  \(\int \frac{dx}{\sqrt{1-x^4}}\) 와 같은 경우(lemniscate 곡선의 길이와 타원적분)는 어떨까? 

\(y^2=1-x^4\) 를 유리함수로 매개화할 수 있다면, 부정적분을 구할 수 있지 않을까?

하지만 애석하게도 그러한 유리함수로의 매개화는 존재하지 않는다!!!

이러한 적분이 바로 19세기의 수학계를 뜨겁게 달구었던 타원적분이다. 


재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
관련논문
관련도서
관련기사
블로그