"타원적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(사용자 2명의 중간 판 41개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>간단한 소개</h5>
+
==개요==
  
 
+
*  먼저 [[타원적분론 입문]] 참조
 +
* <math>R(x,y)</math>는  <math>x,y</math>의 유리함수이고, <math>y^2</math>은 <math>x</math>의 3차 또는 4차식:<math>\int R(x,\sqrt{ax^3+bx^2+cx+d}) \,dx</math> 또는:<math>\int R(x,\sqrt{ax^4+bx^3+cx^2+dx+e}) \,dx</math>
  
 
+
 +
 
 +
 +
==타원 둘레의 길이==
 +
 
 +
* 역사적으로 [[타원 둘레의 길이]]를 구하는 적분에서 그 이름이 기원함.
 +
*  타원  <math>\frac{x^2}{a^2}+\frac{y^2}{b^2}=1</math>의 둘레의 길이는 <math>4aE(k)</math> 로 주어짐.:<math>k=\sqrt{1-\frac{b^2}{a^2}}</math>:<math>E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math>
 +
 
 +
 +
==정의==
 +
 
 +
* 일반적으로 다음과 같은 형태로 주어지는 적분을 타원적분이라 부름
 +
:<math>\int R(x,y)\,dx</math>
 +
여기서 <math>R(x,y)</math>는 <math>x,y</math>의 유리함수, <math>y^2</math>= 중근을 갖지 않는 <math>x</math>의 3차식 또는 4차식.
 +
 
 +
*  예를 들자면,
 +
:<math>\int \frac{dx}{\sqrt{1-x^4}}</math>
 +
:<math>\int \frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math>
 +
 
 +
 +
 
 +
==일종타원적분과 이종타원적분==
 +
 
 +
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]:<math>K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}=\int_0^1\frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math>:<math>K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)</math>
 +
* [[제2종타원적분 E (complete elliptic integral of the second kind)]]:<math>E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math>:<math>E(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},-\frac{1}{2};1;k^2)</math>
 +
* <math>\,_2F_1(a,b;c;z)</math>는 [[초기하급수(Hypergeometric series)]]
 +
 
 +
 +
 
 +
 +
==르장드르의 항등식==
 +
 
 +
* 일종타원적분과 이종타원적분 사이에는 다음과 같은 관계가 성립
 +
:<math>E(k)K'(k)+E'(k)K(k)-K(k)K'(k)=\frac{\pi}{2}</math>
 +
 
 +
또는 <math>\theta+\phi=\frac{\pi}{2}</math> 에 대하여
 +
:<math>E(\sin\theta)K(\sin\phi)+E(\sin\phi)K(\sin\theta)-K(\sin\theta)K(\sin\phi)=\frac{\pi}{2}</math>
 +
 
 +
*  특별히 다음과 같은 관계가 성립함
 +
:<math>2K(\frac{1}{\sqrt{2}})E(\frac{1}{\sqrt{2}})-K(\frac{1}{\sqrt{2}})^2=\frac{\pi}{2}</math>
 +
 
 +
[[산술기하평균함수(AGM)와 파이값의 계산]]에 응용
 +
 
 +
 +
 
 +
 +
 
 +
==덧셈공식==
 +
 
 +
*  파그나노의 공식 ([[렘니스케이트 곡선과 Lemniscatomy]] 항목 참조)
 +
:<math>\int_0^x{\frac{1}{\sqrt{1-x^4}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^4}}}dx = \int_0^{A(x,y)}{\frac{1}{\sqrt{1-x^4}}}dx</math>
 +
여기서 <math>A(x,y)=\frac{x\sqrt{1-y^4}+y\sqrt{1-x^4}}{1+x^2y^2}</math>
 +
*  오일러의 일반화
 +
<math>p(x)=1+mx^2+nx^4</math>일 때,
 +
:<math>\int_0^x{\frac{1}{\sqrt{p(x)}}}dx+\int_0^y{\frac{1}{\sqrt{p(x)}}}dx = \int_0^{B(x,y)}{\frac{1}{\sqrt{p(x)}}}dx</math>
 +
여기서
 +
:<math>B(x,y)=\frac{x\sqrt{p(y)}+y\sqrt{p(x)}}{1-nx^2y^2}</math>
 +
 
 +
 +
 
 +
 +
 
 +
==메모==
 +
 
 +
*  타원적분의 응용으로 [[단진자의 주기와 타원적분]] 항목 참조
  
<h5>하위주제들</h5>
 
  
* 타원적분
 
* [[search?q=%ED%83%80%EC%9B%90%ED%95%A8%EC%88%98&parent id=1942940|타원함수]]
 
* [[타원곡선]]
 
* Complex multiplications
 
  
 
+
  
<h5>관련된 학부 과목과 미리 알고 있으면 좋은 것들</h5>
+
==관련된 항목들==
  
 
+
* [[타원곡선]]
 +
* [[타원함수]]
 +
** [[바이어슈트라스 타원함수 ℘]]
 +
* [[자코비 세타함수]]
 +
* [[초기하급수(Hypergeometric series)]]
 +
* [[대수적 함수와 아벨적분]]
 +
* [[오일러 치환|오일러치환]]
  
 
+
  
<h5>관련된 대학원 과목</h5>
+
  
 
 
  
 
+
 +
==사전 형태의 자료==
  
<h5>관련된 다른 주제들</h5>
+
* http://ko.wikipedia.org/wiki/타원적분
 +
* http://en.wikipedia.org/wiki/Elliptic_integral
 +
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 +
** [http://dlmf.nist.gov/19 Chapter 19 Elliptic Integrals]
  
 
+
  
 
+
 +
==관련논문==
  
<h5>표준적인 도서 및 추천도서</h5>
+
* [http://www.springerlink.com/content/b365w3511067g184/ In Search of the "Birthday" of Elliptic Functions - Bit by bit, the discoverers decided what it was they had discovered.]
 +
**  Rice, Adrian, 48-57, The Mathematical Intelligencer, Volume 30, Number 2, 2008-3
 +
* Totaro, Burt. 2007. “Euler and Algebraic Geometry.” Bulletin of the American Mathematical Society 44 (4): 541–559. doi:[http://dx.doi.org/10.1090/S0273-0979-07-01178-0  10.1090/S0273-0979-07-01178-0].
 +
* [http://www.springerlink.com/content/t32h69374h887w33/ The Lemniscate and Fagnano's Contributions to Elliptic Integrals]
 +
** AYOUB R
 +
* [http://www.math.tulane.edu/%7Evhm/papers_html/EU.pdf A property of Euler's elastic curve]
 +
* [http://www.springerlink.com/content/911pnwauaeggxk13/ The story of Landen, the hyperbola and the ellipse]
 +
** Elemente der Mathematik, Volume 57, Number 1 / 2002년 2월
 +
* [http://www.jstor.org/stable/2687483 Three Fermat Trails to Elliptic Curves]
 +
** Ezra Brown, <cite style="line-height: 2em;">The College Mathematics Journal</cite>, Vol. 31, No. 3 (May, 2000), pp. 162-172
 +
* [http://www.jstor.org/stable/2974515 Elliptic Curves]
 +
** John Stillwell, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 102, No. 9 (Nov., 1995), pp. 831-837
 +
* [http://www.jstor.org/stable/2321821 Abel's Theorem on the Lemniscate]
 +
** Michael Rosen, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 88, No. 6 (Jun. - Jul., 1981), pp. 387-395
  
 
+
  
 
+
  
<h5>위키링크</h5>
+
==관련도서==
  
 
+
* [http://www.amazon.com/Functions-Integrals-Translations-Mathematical-Monographs/dp/0821805878 Elliptic functions and elliptic integrals]
 +
** Viktor Prasolov, Yuri Solovyev
 +
* [http://www.amazon.com/PI-AGM-Analytic-Computational-Complexity/dp/047131515X Pi and the AGM]
 +
** Jonathan M. Borwein, Peter B. Borwein
 +
  
 
+
==블로그==
  
<h5>참고할만한 자료</h5>
+
* [http://bomber0.byus.net/index.php/2009/08/19/1428 삼각치환에서 타원적분으로] 피타고라스의 창, 2009-8-19
 +
[[분류:리만곡면론]]
 +
[[분류:특수함수]]
  
* [http://www.jstor.org/stable/2687483 Three Fermat Trails to Elliptic Curves]<br>
+
==메타데이터==
** Ezra Brown
+
===위키데이터===
** <cite>The College Mathematics Journal</cite>, Vol. 31, No. 3 (May, 2000), pp. 162-172
+
* ID :  [https://www.wikidata.org/wiki/Q1126603 Q1126603]
* [http://www.jstor.org/stable/2974515 Elliptic Curves]<br>
+
===Spacy 패턴 목록===
** John Stillwell
+
* [{'LOWER': 'elliptic'}, {'LEMMA': 'integral'}]
** <cite>The American Mathematical Monthly</cite>, Vol. 102, No. 9 (Nov., 1995), pp. 831-837
 
* [http://www.jstor.org/stable/2321821 Abel's Theorem on the Lemniscate]<br>
 
** Michael Rosen
 
** <cite>The American Mathematical Monthly</cite>, Vol. 88, No. 6 (Jun. - Jul., 1981), pp. 387-395
 

2021년 2월 17일 (수) 06:03 판

개요

  • 먼저 타원적분론 입문 참조
  • \(R(x,y)\)는 \(x,y\)의 유리함수이고, \(y^2\)은 \(x\)의 3차 또는 4차식\[\int R(x,\sqrt{ax^3+bx^2+cx+d}) \,dx\] 또는\[\int R(x,\sqrt{ax^4+bx^3+cx^2+dx+e}) \,dx\]



타원 둘레의 길이

  • 역사적으로 타원 둘레의 길이를 구하는 적분에서 그 이름이 기원함.
  • 타원 \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)의 둘레의 길이는 \(4aE(k)\) 로 주어짐.\[k=\sqrt{1-\frac{b^2}{a^2}}\]\[E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\]


정의

  • 일반적으로 다음과 같은 형태로 주어지는 적분을 타원적분이라 부름

\[\int R(x,y)\,dx\] 여기서 \(R(x,y)\)는 \(x,y\)의 유리함수, \(y^2\)= 중근을 갖지 않는 \(x\)의 3차식 또는 4차식.

  • 예를 들자면,

\[\int \frac{dx}{\sqrt{1-x^4}}\] \[\int \frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\]


일종타원적분과 이종타원적분



르장드르의 항등식

  • 일종타원적분과 이종타원적분 사이에는 다음과 같은 관계가 성립

\[E(k)K'(k)+E'(k)K(k)-K(k)K'(k)=\frac{\pi}{2}\]

또는 \(\theta+\phi=\frac{\pi}{2}\) 에 대하여 \[E(\sin\theta)K(\sin\phi)+E(\sin\phi)K(\sin\theta)-K(\sin\theta)K(\sin\phi)=\frac{\pi}{2}\]

  • 특별히 다음과 같은 관계가 성립함

\[2K(\frac{1}{\sqrt{2}})E(\frac{1}{\sqrt{2}})-K(\frac{1}{\sqrt{2}})^2=\frac{\pi}{2}\]

산술기하평균함수(AGM)와 파이값의 계산에 응용



덧셈공식

\[\int_0^x{\frac{1}{\sqrt{1-x^4}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^4}}}dx = \int_0^{A(x,y)}{\frac{1}{\sqrt{1-x^4}}}dx\] 여기서 \(A(x,y)=\frac{x\sqrt{1-y^4}+y\sqrt{1-x^4}}{1+x^2y^2}\)

  • 오일러의 일반화

\(p(x)=1+mx^2+nx^4\)일 때, \[\int_0^x{\frac{1}{\sqrt{p(x)}}}dx+\int_0^y{\frac{1}{\sqrt{p(x)}}}dx = \int_0^{B(x,y)}{\frac{1}{\sqrt{p(x)}}}dx\] 여기서 \[B(x,y)=\frac{x\sqrt{p(y)}+y\sqrt{p(x)}}{1-nx^2y^2}\]



메모



관련된 항목들




사전 형태의 자료



관련논문



관련도서


블로그

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'elliptic'}, {'LEMMA': 'integral'}]