판별식 (discriminant) 함수와 라마누잔의 타우 함수(tau function)

수학노트
이동: 둘러보기, 검색

개요

  • 복소타원곡선의 판별식으로부터 weight이 12인 모듈라 형식 $\Delta(\tau)$이 얻어짐
  • 푸리에 전개 $\Delta(\tau)=\sum_{n=1}^{\infty}\tau(n)q^n$로부터 얻어지는 계수 $\tau(n)$를 라마누잔의 타우 함수라 하며, 이는 많은 흥미로운 수론적 성질을 가짐


판별식 함수

타원곡선의 판별식

  • \(\tau\in \mathbb H\) 에 대응되는 타원곡선 \(y^2=4x^3-g_2(\tau)x-g_3(\tau)\) 의 판별식은 다음과 주어짐

\[F(\tau)=g_2(\tau)^3-27g_3(\tau)^2\] 여기서 \(g_2, g_3\)는 아이젠슈타인 급수(Eisenstein series)

  • 정의에 따라 \(F\)는 weight 12인 모듈라 형식이 됨
  • 한편, \(g_2(i\infty)=4\pi^4/3\), \(g_3(i\infty)=8\pi^6/27\) 이므로,\[F(i\infty)=(\frac{4\pi^4}{3})^3-27(\frac{8\pi^6}{27})^2=0\]
  • 따라서 cusp 형식이 됨
  • 이 함수의 \(\tau=i\infty\)에서의 푸리에 전개는 다음과 같다

\[F(\tau)=g_2(\tau)^3-27g_3(\tau)^2=(2\pi)^{12}(q-24q+252q^2\cdots)\]

정의

  • 판별식 함수를 다음과 같이 정의

\[\Delta(\tau):=\frac{F(\tau)}{(2\pi)^{12}}=\frac{1}{1728}(E_4^3-E_6^2)\] 여기서 \(E_4, E_6\)는 아이젠슈타인 급수(Eisenstein series)


모듈라 성질

  • 위에서 이미 언급했듯이, weight 12인 모듈라 형식이 됨

\[\Delta \left( \frac {a\tau+b} {c\tau+d}\right) = \left(c\tau+d\right)^{12} \Delta(\tau)\]


무한곱 표현과 데데킨트 에타함수

  • 데데킨트 에타함수\[\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})\] 의 24승으로 주어지는 함수는 weight 12인 cusp 형식이 되므로, 판별식 함수와 같게 됨. 즉,\[\Delta(\tau)=\eta(\tau)^{24}= q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots\]


라마누잔의 타우 함수

  • 판별식 함수의 푸리에 급수에 등장하는 계수를 라마누잔의 타우함수로 정의함. 즉,\[\Delta(\tau)=q\prod_{n>0}(1-q^n)^{24}= \sum_{n=1}^{\infty}\tau(n)q^n\]


라마누잔의 추측

  1. 서로 소인 자연수 \(m,n\) 에 대하여, \(\tau(mn)=\tau(m)\tau(n) \tag{1}\)
  2. 소수 $p$와 자연수 $r$에 대하여, \(\tau(p^{r + 1}) = \tau(p)\tau(p^r) - p^{11}\tau(p^{r - 1}) \tag{2}\)
  3. 소수 $p$에 대하여, \(|\tau(p)| \leq 2p^{11/2} \tag{3}\)
  • 1917년 모델 (Mordell)이 처음 두 성질을 증명
  • 1974년 Deligne이 Weil 추측을 증명함으로써 해결됨

헤케 L-급수

  • 헤케 L-급수를 다음과 같이 정의

$$ L(\Delta,s):=\sum_{n=1}^{\infty}\frac{\tau(n)}{n^s}, \quad \Re(s)>\frac{13}{2} $$

  • 라마누잔 타우 함수의 성질 (1)로부터 다음의 무한곱을 얻는다

$$ L(\Delta,s)=\prod_{p}L_p(\Delta,s) \tag{4} $$ 여기서 $$ L_p(\Delta,s)=\sum_{n=0}^{\infty} \frac{\tau(p^n)}{(p^s)^n} $$

  • 성질 (2)를 사용하여 다음을 얻는다

$$ \sum_{n=1}^{\infty}\tau(p^{n+1})x^{n+1}=x \tau (p)\left(\sum_{n=1}^{\infty}\tau(p^{n})x^{n}\right)-p^{11} x^2\left(\sum_{n=1}^{\infty}\tau(p^{n-1})x^{n-1}\right) $$ 따라서, $$ \sum_{n=0}^{\infty} \tau(p^n)x^n=\frac{1}{1- \tau (p) x+p^{11} x^2} $$ 그리고 $$ L_p(\Delta,s)=\frac{1}{1-p^{-s} \tau (p)+p^{11-2 s}} $$

  • 이제 (4)은 다음과 같이 쓸 수 있다

$$ L(\Delta,s)=\prod_{p}\frac{1}{1-p^{-s} \tau (p)+p^{11-2 s}} $$

Lehmer의 추측


테이블

$$ \begin{array}{c|c} n & \tau(n) \\ \hline 0 & 0 \\ 1 & 1 \\ 2 & -24 \\ 3 & 252 \\ 4 & -1472 \\ 5 & 4830 \\ 6 & -6048 \\ 7 & -16744 \\ 8 & 84480 \\ 9 & -113643 \\ 10 & -115920 \\ 11 & 534612 \\ 12 & -370944 \\ 13 & -577738 \\ 14 & 401856 \\ 15 & 1217160 \\ 16 & 987136 \\ 17 & -6905934 \\ 18 & 2727432 \\ 19 & 10661420 \\ 20 & -7109760 \\ \end{array} $$



메모

관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료


리뷰, 에세이, 강의노트

관련논문