펠 방정식(Pell's equation)

수학노트
둘러보기로 가기 검색하러 가기

개요

  • \(x^2-dy^2=1\) (\(d\) 는 완전제곱수를 약수로 갖지 않는 1보다 큰 자연수)형태의 디오판투스 방정식
  • 연분수 전개를 통하여 모든 해를 구할 수 있음
  • 해의 집합은 군의 구조를 통하여 이해할 수 있음
  • \(x^2-dy^2=\pm 1\) 의 자연수 해를 구하는 문제는 실수 이차 수체의 unit 을 구하는 문제와 같음



연분수 전개와 fundamental solution

  • \(\sqrt{d}\) 를 연분수 전개할때 얻어지는 convergents \({h_i}/{k_i}\) 가 펠 방정식의 해가 되는 \(x=h_i, y=k_i\) 를 찾을 수 있으며, 이 때 \(x\)값을 가장 작게 하는 해를 fundamental solution 이라 한다.
정리

펠 방정식의 해는 연분수 전개의 convergents 중에서 찾을 수 있다.

증명

연분수와 유리수 근사 에서 펠 방정식에 관련한 중요한 정리는 다음과 같다

무리수 \(\alpha\)에 대하여, 유리수 \(p/q\)가 아래의 부등식을 만족시키는 경우, \(p/q\)는 무리수 \(\alpha\)의 단순연분수 전개의 convergents 중의 하나이다 \[|\alpha-\frac{p}{q}|<\frac{1}{2{q^2}}\]

이 정리를 이용하자.

펠 방정식 \(x_ {1}^2-dy_ {1}^2=1\)의 정수해 \((x_1,y_1)\)는 \[x_ {1}^2-dy_ {1}^2=(x_{1}+\sqrt{d}y_{1})(x_{1}-\sqrt{d}y_{1})=1\]를 만족시키므로, \[|x_{1}-\sqrt{d}y_{1}|=\frac{1}{|x_{1}+\sqrt{d}y_{1}|}\] \[|\sqrt{d}-\frac{x_{1}}{y_{1}}|=\frac{1}{|x_{1}+\sqrt{d}y_{1}||y_{1}|}<\frac{1}{\sqrt{d}y_ {1}^{2}}\leq \frac{1}{2y_ {1}^{2}}\]

따라서, 펠 방정식의 해는 연분수 전개의 convergents 중에서 찾을 수 있다. ■


d=7인 경우

  • \(\sqrt{7}\)의 연분수 전개를 통한 유리수근사\[\frac{2}{1},\frac{3}{1},\frac{5}{2},\frac{8}{3},\frac{37}{14}\cdots\]
  • 펠 방정식의 해 찾기\[2^2-d\cdot 1^2=-3\]\[3^2-d\cdot 1^2=2\]\[5^2-d\cdot 2^2=-3\]\[8^2-d\cdot 3^2=1\]\[37^2-d\cdot 14^2=-3\]
  • 따라서 펠 방정식 \(x^2-7y^2=1\)의 fundamental solution 은 \((8,3)\) 이된다


d=13

  • fundamental solution \((x_ 1,y_ 1)\) 가 \(y_ 1>6\) 를 만족시키는 가장 작은 d
  • \(649^2-13\cdot180^2=1\)



d=61

d=109

  • 페르마의 문제
  • \(158070671986249^2 -109\cdot15140424455100^2=1\)


역사


관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료


리뷰, 에세이, 강의노트


관련논문

  • Lehmer, D. H. 1928. On the Multiple Solutions of the Pell Equation. The Annals of Mathematics 30, no. 1/4. Second Series (January 1): 66-72. doi:10.2307/1968268.

노트

말뭉치

  1. We can now see that is a nontrivial solution to pell's equation.[1]
  2. Therefore, such cannot exist and so the method of composition generates every possible solution to Pell's equation.[1]
  3. According to Itô (1987), this equation can be solved completely using solutions to Pell's equation.[2]
  4. In this section we will concentrate on solutions to Pell's equation for the case where N = 1 and d > 0.[3]
  5. Hence we will look for solutions to Pell's equation in positive integers x and y. Suppose that we had such a solution.[3]
  6. Therefore a solution to Pell's equation will give us a good rational approximation to .[3]
  7. Those terms with second entry equal to 1 indicate solutions to Pell's equation.[3]
  8. Joseph Louis Lagrange proved that, as long as n is not a perfect square, Pell's equation has infinitely many distinct integer solutions.[4]
  9. William Brouncker was the first European to solve Pell's equation.[4]
  10. Then the pair ( x 1 , y 1 ) {\displaystyle (x_{1},y_{1})} solving Pell's equation and minimizing x satisfies x 1 = h i and y 1 = k i for some i. This pair is called the fundamental solution.[4]
  11. By this we mean simply: did Pell contribute at all to the study of Pell 's equation?[5]
  12. First let us say what Pell 's equation is.[5]
  13. In fact this method of composition allowed Brahmagupta to make a number of fundamental discoveries regarding Pell 's equation.[5]
  14. One property that he deduced was that ifsatisfies Pell 's equation so does.[5]
  15. It is well known that there exist an infinite number of integer solutions to the equation Dx^2+1=y^2 , known as Pell's equation .[6]
  16. Results concerning Pell's equation will be stated without proof.[7]
  17. This article gives the basic theory of Pell's equation x2 = 1 + D y2, where D ∈ ℕ is a parameter and x, y are integer variables.[8]
  18. The first part will discuss the history of Pell's Equation.[9]
  19. Pell's Equation is an equation of the form x^2 - Dy^2 = 1, where x and y are variables in which integer solutions are sought and D is an integer.[9]
  20. We will then go into how Pell's Equation has even a longer history in India.[9]
  21. We will conclude this part by describing how Pell's Equation was known even in the time of Archimedes.[9]
  22. The name of Pell's equation arose from Leonhard Euler's mistakenly attributing its study to John Pell.[10]
  23. Bhaskara II in the 12th century and Narayana Pandit in the 14th century both found general solutions to Pell's equation and other quadratic indeterminate equations.[10]
  24. Task requirements find the smallest solution in positive integers to Pell's equation for n = {61, 109, 181, 277}.[11]
  25. Thus, it got reduced to our Pell's Equation.[12]
  26. When n is non-square, Pell's Equation has infinitely many solution pairs (X, Y), all of which can be generated by a single fundamental solution (X 1 , Y 1 ).[13]
  27. To apply this method to solve Pell's equation, you simply compute the continued fraction of sqrt(n) and stop when the expansion begins to repeat.[13]
  28. Pell's equation is an important topic of algebraic number theory that involves quadratic forms and the structure of rings of integers in algebraic number fields.[14]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'pell'}, {'LOWER': "'s"}, {'LEMMA': 'equation'}]