표본평균과 표본분산

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

  • 여론조사 에 응용되는 통계의 기초 개념
  • 크기가 n인 표본평균의 분산은 모분산의 1/n 배가 된다


유한모집단, 비복원추출의 경우

  • 크기가 N인 유한모집단 \(\{x_1,\cdots, x_N\}\)의 모평균이 \(\mu\), 모분산이 \(\sigma^2\) 라 하자. 이는 다음과 같이 주어진다

\[ \mu=\frac{1}{N}\sum_{i=1}^{N}x_{i} \]

\[ \sigma^2=\frac{1}{N}\sum_{i=1}^{N}(x_{i}-\mu)^2 \]

  • 여론조사는, 모집단의 \(\mu\)와 \(\sigma^2\)를 알지 못하는 상태에서, 하나의 표본을 통하여 이를 추정하는 문제에 해당한다.
  • 크기가 n인 표본 \(\{y_1,\cdots,y_n\}\subseteq \{x_1,\cdots, x_N\}\) 을 모집단에서 추출했다고 하면, 이로부터 표본평균 \(\bar{y}\)과 표본분산 \(s^2\)을 다음과 같이 정의한다 :

\[\bar{y}=\frac{1}{n}\sum_{i=1}^{n}y_{i}\] \[s^2=\frac{1}{n-1}\sum_{i=1}^{n}(y_{i}-\bar{y})^2\]

  • \(\bar{y}\)와 \(s^2\) 는 모두 새로운 확률변수로 이해할 수 있으며, 이 확률변수의 평균과 분산을 모평균 \(\mu\), 모분산 \(\sigma^2\)를 통하여 표현할 수 있다.
  • 확률변수 \(\bar{y}\)의 경우

\[E(\bar{y})=\mu,\] \[V(\bar{y})=\frac{\sigma^2}{n}(\frac{N-n}{N-1})\]

  • 확률변수 \(s^2\)의 경우

\[E(s^2)=\frac{N}{N-1}\sigma^2\]


모평균과 모분산의 추정

  • 평균이 \(\mu\)인 모집단에서 n 개의 표본 \(y_1,\cdots,y_n\) 을 추출할 때 표본평균 \(\bar{y}\)는 \(\mu\)의 불편추정량이다. 즉\[E(\bar{y})=\mu\] 이 성립한다.
  • 평균이 \(\mu\), 분산 \(\sigma^2\) 인 크기가 N인 모집단에서 n개의 표본 \(y_1,\cdots,y_n\)을 추출할 때 표본분산 \(s^2\)은 \(\frac{N}{N-1}\sigma^2\)의 불편추정량이다. 즉\[E(s^2)=\frac{N}{N-1}\sigma^2\] 이 성립한다.
  • 모평균 \(\mu\)은 표본평균 \(\bar{y}\) 로 추정할 수 있다
  • 표본평균의 분산 \(V(\bar{y})\)은 표본분산 \(s^2\)를 이용하여 \(\frac{s^2}{n}(\frac{N-n}{N})\) 로 추정할 수 있다


  • 모집단이 \(\{1,2,3,4,5,6\}\) 주어진 경우를 생각하자.
  • 모평균 \(\mu\), 모분산 \(\sigma^2\)은 다음과 같이 주어진다

\[\mu=\frac{1+2+3+4+5+6}{6}=\frac{7}{2}\] \[\sigma^2=\sum_{i=1}^{6}(x_i-\mu)^2 = \frac{35}{12}\]


표본의 크기가 2인 경우

\begin{array}{c|c|c|c} i & \text{sample }i & \bar{y}_i & (\bar{y}_i-\mu)^2 & s_i^2 \\ 1 & \{1,2\} & \frac{3}{2} & 4 & \frac{1}{2} \\ 2 & \{1,3\} & 2 & \frac{9}{4} & 2 \\ 3 & \{1,4\} & \frac{5}{2} & 1 & \frac{9}{2} \\ 4 & \{1,5\} & 3 & \frac{1}{4} & 8 \\ 5 & \{1,6\} & \frac{7}{2} & 0 & \frac{25}{2} \\ 6 & \{2,3\} & \frac{5}{2} & 1 & \frac{1}{2} \\ 7 & \{2,4\} & 3 & \frac{1}{4} & 2 \\ 8 & \{2,5\} & \frac{7}{2} & 0 & \frac{9}{2} \\ 9 & \{2,6\} & 4 & \frac{1}{4} & 8 \\ 10 & \{3,4\} & \frac{7}{2} & 0 & \frac{1}{2} \\ 11 & \{3,5\} & 4 & \frac{1}{4} & 2 \\ 12 & \{3,6\} & \frac{9}{2} & 1 & \frac{9}{2} \\ 13 & \{4,5\} & \frac{9}{2} & 1 & \frac{1}{2} \\ 14 & \{4,6\} & 5 & \frac{9}{4} & 2 \\ 15 & \{5,6\} & \frac{11}{2} & 4 & \frac{1}{2} \\ \end{array}

표본평균 \(\bar{y}\)은 \(\left\{\frac{3}{2},2,\frac{5}{2},3,\frac{7}{2},\frac{5}{2},3,\frac{7}{2},4,\frac{7}{2},4,\frac{9}{2},\frac{9}{2},5,\frac{11}{2}\right\}\) 을 모집단으로 하며, 이들의 평균 \(E(\bar{y})\)과 분산 \(V(\bar{y})\) 는 다음과 같이 계산된다 \[ E(\bar{y})=\frac{\sum_{i=1}^{15} \bar{y}_i}{15}=\frac{\frac{3}{2}+2+\frac{5}{2}+3+\frac{7}{2}+\frac{5}{2}+3+\frac{7}{2}+4+\frac{7}{2}+4+\frac{9}{2}+\frac{9}{2}+5+\frac{11}{2}}{15}=\frac{7}{2}=\mu \]

\[ V(\bar{y})=\frac{\sum_{i=1}^{15} (\bar{y}_i-\mu)^2}{15}=\frac{4+\frac{9}{4}+1+\frac{1}{4}+0+1+\frac{1}{4}+0+\frac{1}{4}+0+\frac{1}{4}+1+1+\frac{9}{4}+4}{15}=\frac{7}{6}=\frac{(N-n)}{(N-1)}\frac{\sigma^2}{n} \]

표본분산 \(s^2\)은 \(\left\{\frac{1}{2},2,\frac{9}{2},8,\frac{25}{2},\frac{1}{2},2,\frac{9}{2},8,\frac{1}{2},2,\frac{9}{2},\frac{1}{2},2,\frac{1}{2}\right\}\) 을 모집단으로 하며, 이들의 평균 \(E(s^2)\)은 다음과 같이 계산된다 \[ E(s^2)=\frac{\sum_{i=1}^{15} s_i^2}{15}=\frac{\frac{1}{2}+2+\frac{9}{2}+8+\frac{25}{2}+\frac{1}{2}+2+\frac{9}{2}+8+\frac{1}{2}+2+\frac{9}{2}+\frac{1}{2}+2+\frac{1}{2}}{15}=\frac{7}{2}=\frac{N}{N-1} \sigma ^2 \]


표본의 크기가 3인 경우

\begin{array}{c|c|c|c} i & \text{sample }i & \bar{y}_i & (\bar{y}_i-\mu)^2 & s_i^2 \\ 1 & \{1,2,3\} & 2 & \frac{9}{4} & 1 \\ 2 & \{1,2,4\} & \frac{7}{3} & \frac{49}{36} & \frac{7}{3} \\ 3 & \{1,2,5\} & \frac{8}{3} & \frac{25}{36} & \frac{13}{3} \\ 4 & \{1,2,6\} & 3 & \frac{1}{4} & 7 \\ 5 & \{1,3,4\} & \frac{8}{3} & \frac{25}{36} & \frac{7}{3} \\ 6 & \{1,3,5\} & 3 & \frac{1}{4} & 4 \\ 7 & \{1,3,6\} & \frac{10}{3} & \frac{1}{36} & \frac{19}{3} \\ 8 & \{1,4,5\} & \frac{10}{3} & \frac{1}{36} & \frac{13}{3} \\ 9 & \{1,4,6\} & \frac{11}{3} & \frac{1}{36} & \frac{19}{3} \\ 10 & \{1,5,6\} & 4 & \frac{1}{4} & 7 \\ 11 & \{2,3,4\} & 3 & \frac{1}{4} & 1 \\ 12 & \{2,3,5\} & \frac{10}{3} & \frac{1}{36} & \frac{7}{3} \\ 13 & \{2,3,6\} & \frac{11}{3} & \frac{1}{36} & \frac{13}{3} \\ 14 & \{2,4,5\} & \frac{11}{3} & \frac{1}{36} & \frac{7}{3} \\ 15 & \{2,4,6\} & 4 & \frac{1}{4} & 4 \\ 16 & \{2,5,6\} & \frac{13}{3} & \frac{25}{36} & \frac{13}{3} \\ 17 & \{3,4,5\} & 4 & \frac{1}{4} & 1 \\ 18 & \{3,4,6\} & \frac{13}{3} & \frac{25}{36} & \frac{7}{3} \\ 19 & \{3,5,6\} & \frac{14}{3} & \frac{49}{36} & \frac{7}{3} \\ 20 & \{4,5,6\} & 5 & \frac{9}{4} & 1 \\ \end{array}

표본평균 \(\bar{y}\)의 평균 \(E(\bar{y})\)과 분산 \(V(\bar{y})\) 는 다음과 같다 \[ E(\bar{y})=\frac{7}{2}=\mu \]

\[ V(\bar{y})=\frac{7}{12}=\frac{(6-3)}{(6-1)}\frac{\sigma^2}{3} \]

표본분산 \(s^2\)의 평균 \(E(s^2)\)은 다음과 같다 \[ E(s^2)=\frac{7}{2}=\frac{6}{6-1} \sigma ^2 \]




표본평균

표본분산




메모



관련된 항목들



매스매티카 파일 및 계산 리소스



수학용어번역



사전 형태의 자료



리뷰논문, 에세이, 강의노트

관련도서

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': 'variance'}]