2차 방정식의 근의 공식

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 11월 12일 (목) 23:31 판
둘러보기로 가기 검색하러 가기

개요

  • 이차방정식 \(ax^2+bx+c=0, a\neq 0\) 의 근의 공식

\[ x=\frac{-b\pm\sqrt{b^2-4 a c}}{2 a} \]

 

완전제곱식을 통한 유도

\[ \begin{aligned} ax^2+bx+c=& a(x^2+\frac{b}{a}+\frac{b^2}{4a^2})-\frac{b^2}{4a}+c\\ {}=& a(x+\frac{b}{2a})^2-\frac{b^2-4ac}{4a} \end{aligned} \] 이로부터 \(ax^2+bx+c=0\)이면, \[ (x+\frac{b}{2a})^2=\frac{b^2-4ac}{4a^2} \]  

판별식

 

 

역사

 


 

관련된 항목들


매스매티카 파일 및 계산 리소스