2차 방정식의 근의 공식

수학노트
Pythagoras0 (토론 | 기여)님의 2014년 1월 13일 (월) 16:32 판
둘러보기로 가기 검색하러 가기

개요

  • 이차방정식 \(ax^2+bx+c=0, a\neq 0\) 의 근의 공식

$$ x=\frac{-b\pm\sqrt{b^2-4 a c}}{2 a} $$

 

완전제곱식을 통한 유도

$$ \begin{aligned} ax^2+bx+c=& a(x^2+\frac{b}{a}+\frac{b^2}{4a^2})-\frac{b^2}{4a}+c\\ {}=& a(x+\frac{b}{2a})^2-\frac{b^2-4ac}{4a} \end{aligned} $$ 이로부터 $ax^2+bx+c=0$이면, $$ (x+\frac{b}{2a})^2=\frac{b^2-4ac}{4a^2} $$  

판별식

 

 

역사

 


 

관련된 항목들


매스매티카 파일 및 계산 리소스