3차 방정식의 근의 공식

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요

  • 삼차방정식 \(ax^3+bx^2+cx+d=0\) 의 근의 공식



카르다노의 해법

주어진 방정식 \(x^3+ax^2+bx+c=0\)의 2차항을 없애기 위해, 치환 \(x = t - a/3\)을 사용한다.

새로운 방정식 \(t^3 + pt + q = 0\)을 얻는다. 여기서 \[ p = b - \frac{a^2}3 \\q = c + \frac{2a^3-9ab}{27} \]

새로운 두 변수 \(u,v\)를 다음과 같이 도입하자 \[ u + v = t \\ uv = -p/3 \]

다음 두 식을 만족시킨다. \[u^3+v^3+(3uv+p)(u+v)+q=0 \label{eq1}\] \[ 3uv+p=0\]


식 \ref{eq1}의 양변에 \(u^3\)를 곱하여, 이로부터 \(u\)가 만족시키는 다음 방정식을 얻는다. \[u^6 + qu^3 - {p^3\over 27} = 0\label{eq2}\] 이는 \(u^3\)에 대한 이차방정식이므로, 다음을 얻는다. \[u^{3}=-{q\over 2}\pm \sqrt{{q^{2}\over 4}+{p^{3}\over 27}}\]

한편, \(v^3\) 역시 방정식 \ref{eq2}의 해이므로, 다음을 얻는다. \[v^{3}=-{q\over 2}\pm \sqrt{{q^{2}\over 4}+{p^{3}\over 27}}\]

따라서 \(u, v\)는 다음 여섯개의 값 중 하나를 가질 수 있다.

\[ \sqrt[3]{-{q\over 2}+ \sqrt{{q^{2}\over 4}+{p^{3}\over 27}}}\\ \omega\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\\ \omega^2\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\\ \sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\\ \omega\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\\ \omega^2\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} \]

여기서 \(\omega=-\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i\).

이제 \(uv = -p/3\) 임을 이용하면 \(u\)에 의해 \(v\)의 값이 결정된다.

편의를 위해 \(A,B\)를 다음과 같이 두자. \[ A=\sqrt[3]{-{q\over 2}+ \sqrt{{q^{2}\over 4}+{p^{3}\over 27}}} \\B=\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\] \(t=u+v\)는 다음 세 개의 값을 가질 수 있다.

\[ A+B\\ \omega A+\omega^2 B\\ \omega^2 A+\omega B \]



\(x^3-3x+1\)의 예

  • 방정식 \(x^3-3x+1=0\) 을 생각하자.
  • \(p=-3,q=1\) 이므로,\[-{q\over 2}+ \sqrt{{q^{2}\over 4}+{p^{3}\over 27}}=-\frac{1}{2}+\frac{i \sqrt{3}}{2}=e^{2\pi i/3}\]\[-{q\over 2}- \sqrt{{q^{2}\over 4}+{p^{3}\over 27}}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}=e^{-2\pi i/3}\]
  • \(A=e^{2\pi i/9}\), \(B=e^{-2\pi i/9}\), \(\omega=e^{2\pi i /3}\)
  • 방정식의 세 근은 \(A+B,\omega A+\omega ^2B,\omega ^2A+\omega B\) 는 \(2 \cos \left(\frac{2 \pi }{9}\right),-2 \cos \left(\frac{\pi }{9}\right),2 \sin \left(\frac{\pi }{18}\right)\) 가 된다.



\(ax^3+bx^2+cx+d=0\)의 근의 공식

  • 세 근 \(x_1,x_2,x_3\)는 다음과 같이 표현된다

\[\begin{align} x_1 = &-\frac{b}{3 a}\\ &-\frac{1}{3 a} \sqrt[3]{\frac{2 b^3-9 a b c+27 a^2 d+\sqrt{\left(2 b^3-9 a b c+27 a^2 d\right)^2-4 \left(b^2-3 a c\right)^3}}{2}}\\ &-\frac{1}{3 a} \sqrt[3]{\frac{2 b^3-9 a b c+27 a^2 d-\sqrt{\left(2 b^3-9 a b c+27 a^2 d\right)^2-4 \left(b^2-3 a c\right)^3}}{2}}\\ x_2 = &-\frac{b}{3 a}\\ &+\frac{1+i \sqrt{3}}{6 a} \sqrt[3]{\frac{2 b^3-9 a b c+27 a^2 d+\sqrt{\left(2 b^3-9 a b c+27 a^2 d\right)^2-4 \left(b^2-3 a c\right)^3}}{2}}\\ &+\frac{1-i \sqrt{3}}{6 a} \sqrt[3]{\frac{2 b^3-9 a b c+27 a^2 d-\sqrt{\left(2 b^3-9 a b c+27 a^2 d\right)^2-4 \left(b^2-3 a c\right)^3}}{2}}\\ x_3 = &-\frac{b}{3 a}\\ &+\frac{1-i \sqrt{3}}{6 a} \sqrt[3]{\frac{2 b^3-9 a b c+27 a^2 d+\sqrt{\left(2 b^3-9 a b c+27 a^2 d\right)^2-4 \left(b^2-3 a c\right)^3}}{2}}\\ &+\frac{1+i \sqrt{3}}{6 a} \sqrt[3]{\frac{2 b^3-9 a b c+27 a^2 d-\sqrt{\left(2 b^3-9 a b c+27 a^2 d\right)^2-4 \left(b^2-3 a c\right)^3}}{2}} \end{align}\]


역사

  • 1545년 카르다노가 아르스 마그나》(Ars Magna) 를 출판
  • 수학사 연표



메모

\(u=\sqrt[3]{-{q\over 2}+ \sqrt{{q^{2}\over 4}+{p^{3}\over 27}}}\), \(\left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\), \(\left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\)

\(v=\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}, \left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} , \left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} \)



관련된 항목들


매스매티카 파일 및 계산 리소스



사전 형태의 자료

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': 'resolvent'}]