5차방정식과 근의 공식

수학노트
Pythagoras0 (토론 | 기여)님의 2014년 6월 16일 (월) 04:47 판
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기

개요[편집]




방정식의 근의 공식[편집]

  • 방정식의 계수로부터 시작하여 근호와 사칙연산을 통해 표현
  • 2차 방정식의 근의 공식 :<math>ax^2+bx+c=0</math> :<math>x_1=\frac{-b+ \sqrt{b^2-4ac}}{2a}, \quad x_2=\frac{-b- \sqrt{b^2-4ac}}{2a}</math>
  • 3차, 4차 방정식의 근의 공식:<math>x^3 + px + q = 0</math>:<math>x_1=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}</math>:<math>x_2=\left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}</math>:<math>x_3=\left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} </math>




거듭제곱근 체확장[편집]

  • 체(field)의 기본적인 내용에 대해서는 체론(field theory) 항목을 참조
  • 거듭제곱근 체확장(radical extension) 항목에서 자세히 다룸
  • 방정식의 계수로부터 만들어지는 기본체 <math>F=R_0</math>
  • 적당한 원소 <math>a_0 \in R_0</math>와 소수 <math>n_0</math>에 대하여, 거듭제곱근 <math>\sqrt[n_0]a</math> 를 추가하여 얻어지는 체확장 <math>R_1=R_0(\sqrt[n_0]a_0)</math>
  • 적당한 원소 <math>a_1\in R_1</math>와 소수 <math>n_1</math>에 대하여, 거듭제곱근 <math>\sqrt[n_1]a_1</math> 를 추가하여 얻어지는 체확장 <math>R_2=R_1(\sqrt[n_1]a_1)</math>
  • 이러한 체확장을 유한번 반복하여 얻어지는 <math>F=R_0</math>의 체확장 <math>R</math> 을 거듭제곱근 체확장이라 하며, 이 반복의 회수를 체확장의 높이라 하자.




5차방정식의 근의 공식에 대한 아벨의 증명[편집]



5차방정식의 근의 공식과 갈루아 이론[편집]



대수학의 표준적인 증명[편집]

  • 갈루아 이론을 사용하는 증명
  • <math>f(x)=2x^5-5x^4+5</math>는 유리수체 위에 정의된 기약다항식
  • 두개의 복소수해와 3개의 실수해를 가짐
  • 갈루아군은 <math>S_5</math>은 가해군이 아니므로, splitting field는 거듭제곱근 체확장이 아니다
  • 따라서 이 방정식의 해는 유리수로부터 시작하여 사칙연산과 거듭제곱근을 사용하여 표현가능하지 않다


일반적인 n차 방정식[편집]

  • <math>K=\mathbb{C}(x_1,\cdots,x_n)</math>
  • <math>F=\mathbb{C}(s_1,\cdots,s_n)</math>
  • 방정식
<math>x^n - s_{1} x^{n-1} + s_{2} x^{n-2} + \cdots + (-1)^{n-1}s_{n-1} x +(-1)^n s_n= 0</math>


메모[편집]


역사[편집]


관련된 항목들[편집]



수학용어번역[편집]

  • radical - 대한수학회 수학용어집


사전 형태의 자료[편집]


관련논문[편집]



관련도서[편집]