"5차방정식과 정이십면체"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 38개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
  
* [[5차방정식과 정이십면체|오차방정식과 정이십면체]]
+
* [[펠릭스 클라인  (1849-1925)|펠릭스 클라인 (1849-1925)]]
  
 
+
  
 
+
  
<h5>개요</h5>
+
==정이십면체 뫼비우스 변환군의 불변량==
  
* 정이십면체의 대칭은 교대군 <math>A_5</math>
+
* [[정이십면체 뫼비우스 변환군]]
 +
*  vertex points
 +
** <math>V=F_ 1=z_ 1z_ 2(z_ 1^{10}+11z_ 1^5z_ 2^5-z_ 2^{10})</math>
 +
*  face points
 +
** <math>F=F_ 2=-(z_ 1^{20}+z_ 2^{20})+228(z_ 1^{15}z_ 2^{5}-z_ 1^{5}z_ 2^{15})-494z_ 1^{10}z_ 2^{10}</math>
 +
*  edge points
 +
** <math>E=F_ 3=(z_ 1^{30}+z_ 2^{30})+522(z_ 1^{25}z_ 2^{5}-z_ 1^{5}z_ 2^{25})-10005(z_ 1^{20}z_ 2^{10}+z_ 1^{10}z_ 2^{20})</math>
 +
*  syzygy relation:<math>1728F_ 1^5-F_ 2^3-F_ 3^2=0</math> 또는 <math>1728V^5-E^2-F^3=0</math>
  
 
+
  
<math>S=\begin{pmatrix} \zeta_{10} & 0 \\ 0 & \zeta_{10} \end{pmatrix} </math>, <math>T={\begin{pmatrix} -1 & g \\ g & 1 \end{pmatrix}}</math>,  <math>g=\frac{\sqrt{5}-1}{2}</math>
+
  
 
+
==Tschirnhaus transformation==
  
 
+
* [[Tschirnhaus transformation]] 을 이용하여 일반적인 5차방정식 <math>x^5+Ax^4+Bx^3+Cx^2+Dx+E=0</math> 을 principal quintic 즉, <math>z^5+5az^2+5bz+c=0</math> 형태로 바꿀 수 있다
  
<h5>invariants of the icosahedral group</h5>
+
  
* vertex points<br><math>V=F_1=z_1z_2(z_1^{10}+11z_1^5z_2^5-z_2^{10})</math><br>
+
   
*  face points<br><math>F=F_{2}=-(z_1^{20}+z_2^{20})+228(z_1^{15}z_2^{5}-z_1^{5}z_2^{15})-494z_1^{10}z_2^{10}</math><br>
 
*  edge points<br><math>E=F_3=(z_1^{30}+z_2^{30})+522(z_1^{25}z_2^{5}-z_1^{5}z_2^{25})-10005(z_1^{20}z_2^{10}+z_1^{10}z_2^{20})</math><br>
 
  
 
+
==정이십면체 방정식과 초기하급수 해==
  
 
+
*  정이십면체 방정식(icosahedral equation):<math>w=\frac{V (z)^{5}}{E (z)^{2}}=\frac{z^{5}(z^{10}+11z^5-1)^{5}}{((z^{30}+1)+522(z^{25}-z^{5})-10005(z^{20}+z^{10}))^{2}}</math> 다시 쓰면, :<math>z^5 \left(z^{10}+11 z^5-1\right)^5-w \left(z^{30}+522 \left(z^{25}-z^5\right)-10005 \left(z^{20}+z^{10}\right)+1\right)^2=0</math> 또는 :<math>w z^{60}+1044 w z^{55}+252474 w z^{50}+\cdots =0</math>
 +
*  이 60차방정식의 해는 초기하급수를 사용하여 표현할 수 있다:<math>z=\frac{\, _ 2F_ 1\left(-\frac{1}{60},\frac{29}{60};\frac{4}{5};1728 w \right)}{w^{1/5} \, _ 2F_ 1\left(\frac{11}{60},\frac{41}{60};\frac{6}{5};1728 w \right)}</math>
  
<h5>syzygy relation</h5>
+
  
* <math>1728F_1^5-F_2^3-F_3^2=0</math> 또는 <math>1728V^5-E^2-F^3=0</math>
+
  
 
+
==슈바르츠 삼각형 함수==
  
 
+
* [[초기하 미분방정식(Hypergeometric differential equations)]]:<math>z (1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math>
 +
* [[슈바르츠 삼각형 함수|슈바르츠 삼각형 함수 (s-함수)]]:<math>s(z)=\frac{z^{1-c}\,_ 2F_ 1(a',b';c';z)}{\,_ 2F_ 1(a,b;c;z)}=\frac{z^{1-c}\,_ 2F_ 1(a-c+1,b-c+1;2-c;z)}{\,_ 2F_ 1(a,b;c;z)}</math>
 +
* <math>\alpha=1-c,\beta=b-a,\gamma=c-a-b</math> 로 두면, 상반평면을 <math>\alpha\pi,\beta\pi,\gamma\pi</math> 를 세 각으로 갖는 삼각형인 경우가 된다
 +
* <math>\alpha=1/5, \beta=1/2, \gamma=1/3</math> 로 두면, <math>a=-1/60,b=29/60,c=4/5</math> 를 얻는다
 +
* <math>a=-1/60,b=29/60,c=4/5</math> 를 이용하면,:<math>\frac{Z^{1/5}\,_ 2F_ 1(11/60,41/60;6/5;Z)}{\,_ 2F_ 1(-1/60,29/60;4/5;Z)}</math>
  
<h5>Tschirnhaus transformation</h5>
+
  
* principal quintic<br><math>z^5+5az^2+5bz+c=0</math><br>
+
   
  
* <math>Z=\frac{F_1^{5}}{F_3^{2}}=\frac{z^{5}(z^{10}+11z^5-1)^{5}}{((z^{30}+1)+522(z^{25}-z^{5})-10005(z^{20}+z^{10}))^{2}}</math>
+
==역사==
 
 
 
 
 
 
 
 
 
 
<h5>초기하급수를 이용한 해</h5>
 
 
 
* [[초기하 미분방정식(Hypergeometric differential equations)]]<br><math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math><br>
 
* [[슈바르츠 삼각형 함수|슈바르츠 삼각형 함수 (s-함수)]]<br>
 
* <math>s(z)=\frac{z^{1-c}\,_2F_1(a',b';c';z)}{\,_2F_1(a,b;c;z)}=\frac{z^{1-c}\,_2F_1(a-c+1,b-c+1;2-c;z)}{\,_2F_1(a,b;c;z)}</math><br>
 
* <math>\alpha=1-c,\beta=b-a,\gamma=c-a-b</math> 로 두면, 상반평면을 <math>\alpha\pi,\beta\pi,\gamma\pi</math> 를 세 각으로 갖는 삼각형인 경우가 된다<br>
 
* <math>\alpha=1/5, \beta=1/2, \gamma=1/3</math> 로 두면, <math>a=-1/60,b=29/60,c=4/5</math> 를 얻는다<br>
 
* <math>a=-1/60,b=29/60,c=4/5</math> 를 이용하면,<br><math>\frac{z^{1/5}\,_2F_1(11/60,41/60;6/5;z)}{\,_2F_1(-1/60,29/60;4/5;z)}</math><br>
 
 
 
 
 
 
 
 
 
 
 
<h5>역사</h5>
 
  
 +
* http://library.wolfram.com/examples/quintic/timeline.html
 
* 1824 - 아벨이 일반적인 5차 이상의 방정식의 근의 공식이 없음을 증명함. [[5차방정식의 근의 공식과 아벨의 증명]] 참조
 
* 1824 - 아벨이 일반적인 5차 이상의 방정식의 근의 공식이 없음을 증명함. [[5차방정식의 근의 공식과 아벨의 증명]] 참조
 
* 1858 - 에르미트와 크로네커가 [[타원함수]]를 이용하여 오차방정식의 해를 구함
 
* 1858 - 에르미트와 크로네커가 [[타원함수]]를 이용하여 오차방정식의 해를 구함
* 1877 - 클라인이 '[[5차방정식과 정이십면체|정이십면체와 오차방정식]] 강의' 를 출판함
+
* 1877 - 클라인이 '[[5차방정식과 정이십면체|정이십면체와 오차방정식]] 강의' 를 출판하고, 일반적인 오차방정식의 해를 초기하급수를 이용하여 표현함
  
 
* 1900 - 힐버트가 국제수학자대회 연설의 초반부에 클라인의 오차방정식과 정이십면체에 대한 연구를 언급
 
* 1900 - 힐버트가 국제수학자대회 연설의 초반부에 클라인의 오차방정식과 정이십면체에 대한 연구를 언급
* [http://aleph0.clarku.edu/%7Edjoyce/hilbert/problems.html Mathematical Problems]<br>
+
* [http://aleph0.clarku.edu/%7Edjoyce/hilbert/problems.html Mathematical Problems]
 
** Lecture delivered before the International Congress of Mathematicians at Paris in 1900 By Professor David Hilbert
 
** Lecture delivered before the International Congress of Mathematicians at Paris in 1900 By Professor David Hilbert
 
But '''it often happens also that the same special problem finds application in the most unlike branches of mathematical knowledge'''. So, for example, the problem of the shortest line plays a chief and historically important part in the foundations of geometry, in the theory of curved lines and surfaces, in mechanics and in the calculus of variations. And '''how convincingly has F. Klein, in his work on the icosahedron, pictured the significance which attaches to the problem of the regular polyhedra in elementary geometry, in group theory, in the theory of equations and in that of linear differential equations.'''
 
But '''it often happens also that the same special problem finds application in the most unlike branches of mathematical knowledge'''. So, for example, the problem of the shortest line plays a chief and historically important part in the foundations of geometry, in the theory of curved lines and surfaces, in mechanics and in the calculus of variations. And '''how convincingly has F. Klein, in his work on the icosahedron, pictured the significance which attaches to the problem of the regular polyhedra in elementary geometry, in group theory, in the theory of equations and in that of linear differential equations.'''
 
+
  
[/pages/2026224/attachments/2671447 icos1.jpg][/pages/2026224/attachments/2671449 icos2.jpg]
+
[[파일:2026224-icos1.jpg]]
 +
[[파일:2026224-icos2.jpg]]
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=quintic+equation
+
* [[수학사 연표]]
* http://www.google.com/search?q=quintic+equation+klein
 
* [[수학사연표 (역사)|수학사연표]]
 
  
 
 
  
 
+
==메모==
 +
* Nagano, Atsuhira. “Icosahedral Invariants and Shimura Curves.” arXiv:1504.07498 [math], April 28, 2015. http://arxiv.org/abs/1504.07498.
 +
* Nagano, Atsuhira. “Icosahedral Invariants, CM Points and Class Fields.” arXiv:1504.07500 [math], April 28, 2015. http://arxiv.org/abs/1504.07500.
  
<h5>메모</h5>
+
*  Trott, M. "Solution of Quintics with Hypergeometric Functions." §3 .13 in The Mathematica GuideBook for Symbolics. New York: Springer-Verlag, 2005.http://books.google.com/books?id=3OtUpdFiXvkC&pg=PA1111&dq=icosahedron+and+quintic+mathematica&hl=ko&sa=X&ei=PMUIT4iUMqSLiAKtqaGNCQ&ved=0CDEQ6AEwAA # v=onepage&q=icosahedron %20 and %20 quintic %20 mathematica&f=false
 +
* [http://library.wolfram.com/examples/quintic/ Solving the Quintic with Mathematica]
 +
* http://books.google.com/books?id=txinPHIegGgC&pg=PA86&lpg=PA86&dq=icosahedral+equation+hypergeometric&source=bl&ots=moFmb96tvZ&sig=-_Ge7VpPR8mycWMJBZpcthe59cY&hl=en&sa=X&ei=gdMIT_nuB5LUiAKS4pGSCQ&ved=0CDEQ6AEwAg # v=onepage&q=icosahedral %20 equation %20 hypergeometric&f=false
  
* [http://arxiv1.library.cornell.edu/abs/math/0412065v1 Hessian polyhedra, invariant theory and Appell hypergeometric partial differential equations]
+
==관련된 항목들==
  
 
+
* [[슈바르츠 삼각형 함수|슈바르츠 삼각형 함수 (s-함수)]]
 +
* [[5차방정식과 근의 공식|일반적인 5차 이상의 방정식의 대수적 해가 존재하지 않음에 대한 아벨의 증명]]
 +
* [[뫼비우스 변환군과 기하학]]
 +
* [[구면기하학]]
 +
* [[입체사영 (stereographic projection)]]
 +
* [[로저스-라마누잔 연분수]]
  
 
+
  
<h5>관련된 항목들</h5>
+
  
* [[5차방정식과 근의 공식|일반적인 5차 이상의 방정식의 대수적 해가 존재하지 않음에 대한 아벨의 증명]]
+
==매스매티카 파일 및 계산 리소스==
* [[뫼비우스 변환군과 기하학]]
 
* [[구면기하학]]
 
* [[로저스-라마누잔 항등식|로저스-라마누잔 연분수와 항등식]]
 
* [[평사 투영(stereographic projection)]]
 
  
 
+
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxMzE1N2Y5YjAtMjBkNS00Y2U4LWEwODQtYzcyMzc2MjE2MTVh&sort=name&layout=list&num=50
  
 
 
  
<h5>사전형태의 자료</h5>
+
==사전형태의 자료==
  
 
* http://en.wikipedia.org/wiki/Bring_radical
 
* http://en.wikipedia.org/wiki/Bring_radical
 +
* http://mathworld.wolfram.com/QuinticEquation.html
  
 
 
  
 
+
  
<h5>관련도서</h5>
+
==관련도서==
  
* [http://books.google.com/books?id=hCmz41VxFqEC&hl=ko Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree]<br>
+
* [http://books.google.com/books?id=hCmz41VxFqEC&hl=ko Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree]
 
** Felix Klein, Part II. chapter III.
 
** Felix Klein, Part II. chapter III.
* [http://books.google.com/books?id=URHnD88S_FAC Geometry of the Quintic]<br>
+
* [http://books.google.com/books?id=URHnD88S_FAC Geometry of the Quintic]
 
** Jerry Shurman
 
** Jerry Shurman
 
** 위 클라인 책의 일부 내용이 학부생들도 충분히 접근할 수 있도록 잘 쓰여짐.
 
** 위 클라인 책의 일부 내용이 학부생들도 충분히 접근할 수 있도록 잘 쓰여짐.
* [http://www.amazon.com/Beyond-Quartic-Equation-Bruce-King/dp/0817637761 Beyond the Quartic Equation]<br>
+
* [http://www.amazon.com/Beyond-Quartic-Equation-Bruce-King/dp/0817637761 Bruce King, Beyond the Quartic Equation]
** Bruce King
+
* [http://books.google.com/books?id=i76mmyvDHYUC&pg=PA66#v=onepage&q&f=false Finite Möbius groups, minimal immersions of spheres, and moduli]
* [http://books.google.com/books?id=i76mmyvDHYUC&pg=PA66#v=onepage&q&f=false Finite Möbius groups, minimal immersions of spheres, and moduli]<br>
 
 
** Gabor Toth, 66p
 
** Gabor Toth, 66p
  
* [http://www.amazon.com/Glimpses-Algebra-Geometry-Undergraduate-Mathematics/dp/0387982132 Glimpses of Algebra and Geometry (Undergraduate Texts in Mathematics)]<br>
+
* [http://www.amazon.com/Glimpses-Algebra-Geometry-Undergraduate-Mathematics/dp/0387982132 Glimpses of Algebra and Geometry (Undergraduate Texts in Mathematics)]
 
** Gabor Toth
 
** Gabor Toth
  
 
 
  
 
 
  
<h5>관련논문</h5>
+
==관련논문==
 +
* Crass, Scott. 2014. “Dynamics of a Soccer Ball.” arXiv:1404.3170 [math], April. http://arxiv.org/abs/1404.3170.
 +
* Yang, Lei. 2004. “Hessian Polyhedra, Invariant Theory and Appell Hypergeometric Partial Differential Equations.” arXiv:math/0412065,
 +
* Crass, Scott. 1999. “Solving the Quintic by Iteration in Three Dimensions.” arXiv:math/9903054, March. http://arxiv.org/abs/math/9903054.
 +
* Doyle, Peter, and Curt McMullen. 1989. “Solving the Quintic by Iteration.” Acta Mathematica 163 (1): 151–80. doi:10.1007/BF02392735.
 +
** [http://math.dartmouth.edu/%7Edoyle/docs/icos/icos/icos.html Solving the quintic by iteration]
 +
* J-P. Serre, Extensions icosaédriques ([[2026224/attachments/1117048|pdf]]), Oeuvres III, p .550-554 (no. 123 (1980)), Springer, 1986
  
* [http://math.dartmouth.edu/%7Edoyle/docs/icos/icos/icos.html Solving the quintic by iteration]<br>
+
   
** Peter Doyle and Curt McMullen
 
* Extensions icosaédriques ([[2026224/attachments/1117048|pdf]])<br>
 
** J-P. Serre, Oeuvres III, p.550-554 (no. 123 (1980)), Springer, 1986
 
  
 
+
  
 
+
==관련링크와 웹페이지==
 
 
<h5>관련링크와 웹페이지</h5>
 
  
 
* http://library.wolfram.com/examples/quintic/main.html
 
* http://library.wolfram.com/examples/quintic/main.html
 
* http://mathworld.wolfram.com/IcosahedralEquation.html
 
* http://mathworld.wolfram.com/IcosahedralEquation.html
  
 
+
  
 
+
  
<h5>블로그</h5>
+
==블로그==
  
* [http://bomber0.byus.net/index.php/2008/10/07/813 펠릭스 클라인 : Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree]<br>
+
* [http://bomber0.byus.net/index.php/2008/10/07/813 펠릭스 클라인 : Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree]
 
** 피타고라스의 창
 
** 피타고라스의 창
 +
[[분류:방정식과 근의 공식]]
 +
[[분류:추상대수학]]
 +
[[분류:리만곡면론]]
 +
[[분류:구면기하학]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2386216 Q2386216]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'bring'}, {'LEMMA': 'radical'}]
 +
* [{'LEMMA': 'ultraradical'}]

2021년 2월 17일 (수) 04:46 기준 최신판

개요



정이십면체 뫼비우스 변환군의 불변량

  • 정이십면체 뫼비우스 변환군
  • vertex points
    • \(V=F_ 1=z_ 1z_ 2(z_ 1^{10}+11z_ 1^5z_ 2^5-z_ 2^{10})\)
  • face points
    • \(F=F_ 2=-(z_ 1^{20}+z_ 2^{20})+228(z_ 1^{15}z_ 2^{5}-z_ 1^{5}z_ 2^{15})-494z_ 1^{10}z_ 2^{10}\)
  • edge points
    • \(E=F_ 3=(z_ 1^{30}+z_ 2^{30})+522(z_ 1^{25}z_ 2^{5}-z_ 1^{5}z_ 2^{25})-10005(z_ 1^{20}z_ 2^{10}+z_ 1^{10}z_ 2^{20})\)
  • syzygy relation\[1728F_ 1^5-F_ 2^3-F_ 3^2=0\] 또는 \(1728V^5-E^2-F^3=0\)



Tschirnhaus transformation

  • Tschirnhaus transformation 을 이용하여 일반적인 5차방정식 \(x^5+Ax^4+Bx^3+Cx^2+Dx+E=0\) 을 principal quintic 즉, \(z^5+5az^2+5bz+c=0\) 형태로 바꿀 수 있다



정이십면체 방정식과 초기하급수 해

  • 정이십면체 방정식(icosahedral equation)\[w=\frac{V (z)^{5}}{E (z)^{2}}=\frac{z^{5}(z^{10}+11z^5-1)^{5}}{((z^{30}+1)+522(z^{25}-z^{5})-10005(z^{20}+z^{10}))^{2}}\] 다시 쓰면, \[z^5 \left(z^{10}+11 z^5-1\right)^5-w \left(z^{30}+522 \left(z^{25}-z^5\right)-10005 \left(z^{20}+z^{10}\right)+1\right)^2=0\] 또는 \[w z^{60}+1044 w z^{55}+252474 w z^{50}+\cdots =0\]
  • 이 60차방정식의 해는 초기하급수를 사용하여 표현할 수 있다\[z=\frac{\, _ 2F_ 1\left(-\frac{1}{60},\frac{29}{60};\frac{4}{5};1728 w \right)}{w^{1/5} \, _ 2F_ 1\left(\frac{11}{60},\frac{41}{60};\frac{6}{5};1728 w \right)}\]



슈바르츠 삼각형 함수

  • 초기하 미분방정식(Hypergeometric differential equations)\[z (1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0\]
  • 슈바르츠 삼각형 함수 (s-함수)\[s(z)=\frac{z^{1-c}\,_ 2F_ 1(a',b';c';z)}{\,_ 2F_ 1(a,b;c;z)}=\frac{z^{1-c}\,_ 2F_ 1(a-c+1,b-c+1;2-c;z)}{\,_ 2F_ 1(a,b;c;z)}\]
  • \(\alpha=1-c,\beta=b-a,\gamma=c-a-b\) 로 두면, 상반평면을 \(\alpha\pi,\beta\pi,\gamma\pi\) 를 세 각으로 갖는 삼각형인 경우가 된다
  • \(\alpha=1/5, \beta=1/2, \gamma=1/3\) 로 두면, \(a=-1/60,b=29/60,c=4/5\) 를 얻는다
  • \(a=-1/60,b=29/60,c=4/5\) 를 이용하면,\[\frac{Z^{1/5}\,_ 2F_ 1(11/60,41/60;6/5;Z)}{\,_ 2F_ 1(-1/60,29/60;4/5;Z)}\]



역사

  • 1900 - 힐버트가 국제수학자대회 연설의 초반부에 클라인의 오차방정식과 정이십면체에 대한 연구를 언급
  • Mathematical Problems
    • Lecture delivered before the International Congress of Mathematicians at Paris in 1900 By Professor David Hilbert

But it often happens also that the same special problem finds application in the most unlike branches of mathematical knowledge. So, for example, the problem of the shortest line plays a chief and historically important part in the foundations of geometry, in the theory of curved lines and surfaces, in mechanics and in the calculus of variations. And how convincingly has F. Klein, in his work on the icosahedron, pictured the significance which attaches to the problem of the regular polyhedra in elementary geometry, in group theory, in the theory of equations and in that of linear differential equations.


2026224-icos1.jpg 2026224-icos2.jpg


메모

관련된 항목들



매스매티카 파일 및 계산 리소스


사전형태의 자료



관련도서


관련논문

  • Crass, Scott. 2014. “Dynamics of a Soccer Ball.” arXiv:1404.3170 [math], April. http://arxiv.org/abs/1404.3170.
  • Yang, Lei. 2004. “Hessian Polyhedra, Invariant Theory and Appell Hypergeometric Partial Differential Equations.” arXiv:math/0412065,
  • Crass, Scott. 1999. “Solving the Quintic by Iteration in Three Dimensions.” arXiv:math/9903054, March. http://arxiv.org/abs/math/9903054.
  • Doyle, Peter, and Curt McMullen. 1989. “Solving the Quintic by Iteration.” Acta Mathematica 163 (1): 151–80. doi:10.1007/BF02392735.
  • J-P. Serre, Extensions icosaédriques (pdf), Oeuvres III, p .550-554 (no. 123 (1980)), Springer, 1986



관련링크와 웹페이지



블로그

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'bring'}, {'LEMMA': 'radical'}]
  • [{'LEMMA': 'ultraradical'}]