5차방정식의 근의 공식과 갈루아 이론

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 1일 (목) 09:21 판 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소==    
개요==
  • 갈루아 이론 을 통한 5차방정식의 근의 공식의 불가능성 증명
   

순환체확장

  • 순환 체확장(cyclic extension) 항목에서 가져옴
  • 체\(F\)와 그 갈루아체확장 \(K\)에 대하여 갈루아군 \(\text{Gal}(K/F)\)이 순환군이면, 이 체확장을 순환체확장이라 부름

 

 

 

(정리)

\(F\)가 primitive n-th root of unity \(}\zeta_n\)를 포함한다 하자.(가령 \(F\)가 복소수체를 포함하는 경우)

\(K\)가 F의 순환체확장이면, 적당한 원소 \(a\in F\) 가 존재하여, \(K= F(a)\)와 \(a^n\in F\) 를 만족시킨다.

 

 

 

(증명)

힐버트 정리 90... 또는

\(\text{Gal}(K/F)\) 가 \(\sigma\)에 의하여 생성되는 순환군이라 하자.

\(K\)에 정의된 (\(F\)-)선형사상 \(\tau=\sum_{i=0}^{n-1}\zeta_n^i\sigma^i\)는 \(\{\sigma^i\}\)의 선형독립성에 의하여,  0이 아니다.

따라서 \(\tau(b)\in K\neq 0 \) 인 \(b\in K\)가 존재한다. 

\(a=\tau(b)=\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b)\)로 두면,

 \(\sigma(a)=\sigma(\tau(b))=\sigma(\sum_{i=0}^{n-1}\zeta_n^i\sigma^i(b))=\sum_{i=0}^{n-1}\zeta_n^i\sigma^{i+1}(b)=\zeta_n^{-1}\sum_{i=0}^{n-1}\zeta_n^{i+1}\sigma^{i+1}(b)=\zeta_n^{-1}a\)

따라서 \([F(a):F]\geq n\) 임을 알 수 있고, \([K:F]=n\)으로부터 \(K= F(a)\)를 얻는다.

한편  \(\sigma(a)=\zeta_n^{-1}a\) 이므로, \(\sigma(a^n)=}a^n\)이 된다. 따라서 \(a^n\in F\). ■

 

 

 

거듭제곱근 체확장(radical extension)==
  • 거듭제곱근 체확장(radical extension) 에서 가져옴
  • 기본체 \(F=F_0\)
  • 다음조건을 만족시키는 \(F\)의 체확장 \(K=F(a_1,a_2,\cdots,a_r)\)를 거듭제곱근 체확장이라 한다
    자연수 \(n_1,\cdots,n_r\)이 존재하여, \(a_1^{n_1}\in F\) 이고 \(1<i\leq r\)에 대하여 \(a_i^{n_i} \in F(a_1,a_2,\cdots,a_{i-1})\)
  • 풀어쓰면 다음과 같다
    원소 \(b_1\in F\)와 자연수 \(n_1\)에 대하여, 거듭제곱근 \(a_1=\sqrt[n_1]b_1\) 를 추가하여 얻어지는 체확장 \(F_1=F(a_1)=F(\sqrt[n_1]b_1)\)
    원소 \(b_2\in F_1\)와 자연수 \(n_2\)에 대하여, 거듭제곱근 \(a_2=\sqrt[n_2]b_2\) 를 추가하여 얻어지는 체확장 \(F_2=F_1(b_2)=F_1(\sqrt[n_2]a_2)\)
    이러한 체확장을 유한번 반복하여 얻어지는  \(F=F_0\)의 체확장을 거듭제곱근 체확장이라 한다

  • \(\mathbb{Q}\subseteq\mathbb{Q}(\sqrt{2})\subseteq\mathbb{Q}(\sqrt{2})(\sqrt{\sqrt{2}})=\mathbb{Q}(\sqrt[4]2)\)
    \(\mathbb{Q}\subseteq\mathbb{Q}(\sqrt{2})\subseteq\mathbb{Q}(\sqrt{2}, \sqrt{3})\)
   

거듭제곱근 체확장의 갈루아군

  • 갈루아 군의 정의는 갈루아 이론 항목을 참조
  • 체 F가 primitive root of unity 를 가진다고 하자. 
  • F의 거듭제곱근 체확장 \(K=F(\sqrt[n]a)\) 의 갈루아군은 크기가 n인 순환군이다
    \(\text{Gal}(K/F)\cong C_n\)

 

 

거듭제곱근 체확장과 가해군==   (정리) 체 F는 적당한 primitive n-th root of unity를 모두 가진다고 가정하자.  \(F\)의 거듭제곱근 체확장 \(K\)에 대하여  \(G=\text{Gal}(K/F)\)는 가해군이다.    (증명) 거듭제곱근 체확장(radical extension) 의 타워가 다음과 같이 주어졌다고 하자.  \(F=F_0 \subset F_1 \subset F_2 \subset \cdots \subset F_r=K\) 자연수 \(n_1,\cdots,n_r\)이 존재하여, \(a_1^{n_1}\in F\) 이고 \(1<i\leq r\)에 대하여 \(a_i^{n_i} \in F(a_1,a_2,\cdots,a_{i-1})\) 이 체확장의 타워로부터 \(G=\text{Gal}(K/F)\)의 부분군으로 이루어진 타워를 얻는다 \(G=G_0=\text{Gal}(K/F_{0}) \supset \text{Gal}(K/F_{1}) \supset \text{Gal}(K/F_{2}) \supset \cdots \supset \text{Gal}(K/F_{r})=\{\text{id}\}\) \(G_i=\text{Gal}(K/F_{i})\)로 두자 갈루아 이론의 기본정리에 의하여, 다음을 얻는다 \(G_i/G_{i+1}=\text{Gal}(K/F_{i})/\text{Gal}(K/F_{i+1})\cong \text{Gal}(F_{i+1}/F_{i})\cong C_{n_i}\) 따라서 \(G=\text{Gal}(K/F)\)는 가해군이다. ■    

역사

 

 

 

메모

 

관련된 항목들