"Chowla-셀베르그 공식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
  
 
* [[Chowla-셀베르그 공식]]<br>
 
* [[Chowla-셀베르그 공식]]<br>
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==
  
 
* [[Epstein 제타함수와 크로네커 극한 공식|Epstein 제타함수]]에 대한 공식과 [[제1종타원적분 K (complete elliptic integral of the first kind)]] 에의 응용<br>
 
* [[Epstein 제타함수와 크로네커 극한 공식|Epstein 제타함수]]에 대한 공식과 [[제1종타원적분 K (complete elliptic integral of the first kind)]] 에의 응용<br>
17번째 줄: 17번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">Epstein 제타함수</h5>
+
<h5 style="margin: 0px; line-height: 2em;">Epstein 제타함수==
  
 
*  양의 정부호인 [[정수계수 이변수 이차형식(binary integral quadratic forms)|정수]][[정수계수 이변수 이차형식(binary integral quadratic forms)|계수이차형식]] <math>Q(X,Y)=aX^2+bXY+cY^2</math> (즉<math>a>0</math>,<math>\Delta=b^2-4ac<0</math>) 에 대하여 다음과 같이 정의<br><math>\zeta_Q(s) =\sum_{(X,Y)\ne (0,0)}\frac{1}{(aX^2+bXY+cy^2)^s}</math><br>
 
*  양의 정부호인 [[정수계수 이변수 이차형식(binary integral quadratic forms)|정수]][[정수계수 이변수 이차형식(binary integral quadratic forms)|계수이차형식]] <math>Q(X,Y)=aX^2+bXY+cY^2</math> (즉<math>a>0</math>,<math>\Delta=b^2-4ac<0</math>) 에 대하여 다음과 같이 정의<br><math>\zeta_Q(s) =\sum_{(X,Y)\ne (0,0)}\frac{1}{(aX^2+bXY+cy^2)^s}</math><br>
25번째 줄: 25번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">제1종 타원적분</h5>
+
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">제1종 타원적분==
  
 
* [[제1종타원적분 K (complete elliptic integral of the first kind)]] 에서는 다음과 같은 경우에 대하여, 타원적분의 값을 구체적으로 얻었다<br><math>\frac{K'}{K}(\frac{1}{\sqrt{2}})= 1</math> 이면, <math>K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots</math><br><math>\frac{K'}{K}(\sqrt{2}-1)= \sqrt{2}</math> 이면, <math>K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}}{2^{13/4}}B(\frac{1}{8},\frac{3}{8})=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}</math><br><math>\frac{K'}{K}\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)= \sqrt{3}</math> 이면, <math>K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt[4]{3}\sqrt{\pi}}=1.5981420\cdots</math><br>
 
* [[제1종타원적분 K (complete elliptic integral of the first kind)]] 에서는 다음과 같은 경우에 대하여, 타원적분의 값을 구체적으로 얻었다<br><math>\frac{K'}{K}(\frac{1}{\sqrt{2}})= 1</math> 이면, <math>K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots</math><br><math>\frac{K'}{K}(\sqrt{2}-1)= \sqrt{2}</math> 이면, <math>K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}}{2^{13/4}}B(\frac{1}{8},\frac{3}{8})=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}</math><br><math>\frac{K'}{K}\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)= \sqrt{3}</math> 이면, <math>K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt[4]{3}\sqrt{\pi}}=1.5981420\cdots</math><br>
35번째 줄: 35번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">Chowla-셀베르그의 정리</h5>
+
<h5 style="line-height: 2em; margin: 0px;">Chowla-셀베르그의 정리==
  
 
*  (정리)<br><math>i\frac{K'}{K}(k)=i\frac{K(\sqrt{1-k^2})}{K(k)}</math> 가 <math>d_K</math>를 판별식으로 갖는 복소이차수체 <math>K=\mathbb{Q}(\sqrt{d_K})</math>의 원소일 때, [[제1종타원적분 K (complete elliptic integral of the first kind)|제1종타원적분 K]]에 대하여 다음이 성립한다.<br><math>{K}(k)=\lambda\sqrt{\pi}\{\prod_{m=1}^{|d_K|}\Gamma(\frac{m}{|d_K|})^{\left(\frac{d_K}{m}\right)}\}^{w_{K}/{4h_{K}}}</math> 여기서 <math>\lambda</math>는 적당한 [[대수적수론|대수적수]].<br>
 
*  (정리)<br><math>i\frac{K'}{K}(k)=i\frac{K(\sqrt{1-k^2})}{K(k)}</math> 가 <math>d_K</math>를 판별식으로 갖는 복소이차수체 <math>K=\mathbb{Q}(\sqrt{d_K})</math>의 원소일 때, [[제1종타원적분 K (complete elliptic integral of the first kind)|제1종타원적분 K]]에 대하여 다음이 성립한다.<br><math>{K}(k)=\lambda\sqrt{\pi}\{\prod_{m=1}^{|d_K|}\Gamma(\frac{m}{|d_K|})^{\left(\frac{d_K}{m}\right)}\}^{w_{K}/{4h_{K}}}</math> 여기서 <math>\lambda</math>는 적당한 [[대수적수론|대수적수]].<br>
43번째 줄: 43번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">Chowla-셀베르그의 정리의 특수한 경우</h5>
+
<h5 style="line-height: 2em; margin: 0px;">Chowla-셀베르그의 정리의 특수한 경우==
  
 
*  소수 p에 대하여, 복소이차수체 <math>K=\mathbb{Q}(\sqrt{-p})</math>의 [[수체의 class number|class number]] 가 1인 경우, [[제1종타원적분 K (complete elliptic integral of the first kind)|제1종타원적분 K]]에 대하여 다음이 성립한다.<br>
 
*  소수 p에 대하여, 복소이차수체 <math>K=\mathbb{Q}(\sqrt{-p})</math>의 [[수체의 class number|class number]] 가 1인 경우, [[제1종타원적분 K (complete elliptic integral of the first kind)|제1종타원적분 K]]에 대하여 다음이 성립한다.<br>
54번째 줄: 54번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사==
  
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
62번째 줄: 62번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모==
  
 
*  p-adic case Gross-Koblitz form<br>
 
*  p-adic case Gross-Koblitz form<br>
70번째 줄: 70번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들==
  
 
* [[데데킨트 에타함수]]<br>
 
* [[데데킨트 에타함수]]<br>
82번째 줄: 82번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
  
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* http://www.google.com/dictionary?langpair=en|ko&q=
93번째 줄: 93번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
107번째 줄: 107번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문==
  
 
* [http://dx.doi.org/10.1090%2FS0273-0979-08-01223-8 The lord of the numbers, Atle Selberg. On his life and mathematics]<br>
 
* [http://dx.doi.org/10.1090%2FS0273-0979-08-01223-8 The lord of the numbers, Atle Selberg. On his life and mathematics]<br>
128번째 줄: 128번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서==
  
 
* [http://books.google.com/books?id=voR95sDdb_MC Elliptic Functions According to Eisenstein and Kronecker] A.Weil, Springer, 1998<br>
 
* [http://books.google.com/books?id=voR95sDdb_MC Elliptic Functions According to Eisenstein and Kronecker] A.Weil, Springer, 1998<br>

2012년 11월 1일 (목) 09:34 판

이 항목의 스프링노트 원문주소==    
개요==      
Epstein 제타함수==
  • 양의 정부호인 정수계수이차형식 \(Q(X,Y)=aX^2+bXY+cY^2\) (즉\(a>0\),\(\Delta=b^2-4ac<0\)) 에 대하여 다음과 같이 정의
    \(\zeta_Q(s) =\sum_{(X,Y)\ne (0,0)}\frac{1}{(aX^2+bXY+cy^2)^s}\)
   
제1종 타원적분==
  • 제1종타원적분 K (complete elliptic integral of the first kind) 에서는 다음과 같은 경우에 대하여, 타원적분의 값을 구체적으로 얻었다
    \(\frac{K'}{K}(\frac{1}{\sqrt{2}})= 1\) 이면, \(K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots\)
    \(\frac{K'}{K}(\sqrt{2}-1)= \sqrt{2}\) 이면, \(K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}}{2^{13/4}}B(\frac{1}{8},\frac{3}{8})=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}\)
    \(\frac{K'}{K}\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)= \sqrt{3}\) 이면, \(K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt[4]{3}\sqrt{\pi}}=1.5981420\cdots\)
  • lemniscate 곡선의 길이와 타원적분
    \(4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(\frac{1}{2},\frac{1}{4})=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}=5.24\cdots\)
  • 제1종타원적분 K (complete elliptic integral of the first kind)
    \(\int_0^1\frac{dx}{\sqrt{1-x^3}}=\frac{1}{3}B(\frac{1}{2},\frac{1}{3})=\frac{1}{6}B(\frac{1}{3},\frac{1}{6})\)
    \(6\int_{0}^{1} \frac{dx}{\sqrt{1-x^3}}=B(\frac{1}{3},\frac{1}{6})=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\Gamma(\frac{1}{2})}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\sqrt{\pi}}=8.413\cdots\)
   
Chowla-셀베르그의 정리==
  • (정리)
    \(i\frac{K'}{K}(k)=i\frac{K(\sqrt{1-k^2})}{K(k)}\) 가 \(d_K\)를 판별식으로 갖는 복소이차수체 \(K=\mathbb{Q}(\sqrt{d_K})\)의 원소일 때, 제1종타원적분 K에 대하여 다음이 성립한다.
    \({K}(k)=\lambda\sqrt{\pi}\{\prod_{m=1}^{|d_K|}\Gamma(\frac{m}{|d_K|})^{\left(\frac{d_K}{m}\right)}\}^{w_{K}/{4h_{K}}}\) 여기서 \(\lambda\)는 적당한 대수적수.
   
Chowla-셀베르그의 정리의 특수한 경우==
  • 소수 p에 대하여, 복소이차수체 \(K=\mathbb{Q}(\sqrt{-p})\)의 class number 가 1인 경우, 제1종타원적분 K에 대하여 다음이 성립한다.
  • \(\frac{K'}{K}(k)=\sqrt{p}\) 를 만족시키는 k를 찾자.
    \(\frac{K(k)}{2\pi}=\frac{2^{1/3}(kk')^{-1/6}}{\sqrt{2\pi p}}\{\prod_{m=1}^{|d_K|}\Gamma(\frac{m}{|d_K|})^{\left(\frac{d_K}{m}\right)}\}^{w_{K}}\)
  • \(p=3\)인 경우
    \(\frac{K}{2\pi}=\frac{2^{2/3}}{\sqrt{6\pi}}(\frac{\Gamma(\frac{1}{3})}{\Gamma(\frac{2}{3})})^{3/2}\)
  • \(p=7\)인 경우
    \(\frac{K}{2\pi}=\frac{2}{\sqrt{14\pi}}\sqrt{\frac{\Gamma(\frac{1}{7})\Gamma(\frac{2}{7})\Gamma(\frac{4}{7})}{\Gamma(\frac{3}{7})\Gamma(\frac{5}{7})\Gamma(\frac{6}{7})}}\)
   
역사==    
메모==
  • p-adic case Gross-Koblitz form
   
관련된 항목들==    
수학용어번역==    
사전 형태의 자료==    
관련논문==    
관련도서==