Chowla-셀베르그 공식

수학노트
http://bomber0.myid.net/ (토론)님의 2011년 5월 19일 (목) 09:56 판
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소

 

 

개요

 

 

 

Epstein 제타함수
  • 양의 정부호인 정수계수이차형식 \(Q(X,Y)=aX^2+bXY+cY^2\) (즉\(a>0\),\(\Delta=b^2-4ac<0\)) 에 대하여 다음과 같이 정의
    \(\zeta_Q(s) =\sum_{(X,Y)\ne (0,0)}\frac{1}{(aX^2+bXY+cy^2)^s}\)

 

 

제1종 타원적분
  • 제1종타원적분 K (complete elliptic integral of the first kind) 에서는 다음과 같은 경우에 대하여, 타원적분의 값을 구체적으로 얻었다
    \(\frac{K'}{K}(\frac{1}{\sqrt{2}})= 1\) 이면, \(K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots\)
    \(\frac{K'}{K}(\sqrt{2}-1)= \sqrt{2}\) 이면, \(K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}}{2^{13/4}}B(\frac{1}{8},\frac{3}{8})=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}\)
    \(\frac{K'}{K}\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)= \sqrt{3}\) 이면, \(K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt[4]{3}\sqrt{\pi}}=1.5981420\cdots\)
  • lemniscate 곡선의 길이와 타원적분
    \(4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(\frac{1}{2},\frac{1}{4})=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}=5.24\cdots\)
  • 제1종타원적분 K (complete elliptic integral of the first kind)
    \(\int_0^1\frac{dx}{\sqrt{1-x^3}}=\frac{1}{3}B(\frac{1}{2},\frac{1}{3})=\frac{1}{6}B(\frac{1}{3},\frac{1}{6})\)
    \(6\int_{0}^{1} \frac{dx}{\sqrt{1-x^3}}=B(\frac{1}{3},\frac{1}{6})=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\Gamma(\frac{1}{2})}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\sqrt{\pi}}=8.413\cdots\)

 

 

Chowla-셀베르그의 정리
  • (정리)
    \(i\frac{K'}{K}(k)=i\frac{K(\sqrt{1-k^2})}{K(k)}\) 가 \(d_K\)를 판별식으로 갖는 복소이차수체 \(K=\mathbb{Q}(\sqrt{d_K})\)의 원소일 때, 제1종타원적분 K에 대하여다음이 성립한다.
    \({K}(k)=\lambda\sqrt{\pi}\{\prod_{m=1}^{|d_K|}\Gamma(\frac{m}{|d_K|})^{\left(\frac{d_K}{m}\right)}\}^{w_{K}/{4h_{K}}}\) 여기서 \(\lambda\)는 적당한 대수적수.

 

 

Chowla-셀베르그의 정리의 특수한 경우
  • 소수 p에 대하여, 복소이차수체 \(K=\mathbb{Q}(\sqrt{-p})\)의 class number 가 1인 경우, 제1종타원적분 K에 대하여다음이 성립한다.
  • \(\frac{K'}{K}(k)=\sqrt{p}\) 를 만족시키는 k를 찾자.
    \(\frac{{K}(k)}{2\pi}=\frac{2^{1/3}(kk')^{-1/6}}{\sqrt{2\pi p}}\{\prod_{m=1}^{|d_K|}\Gamma(\frac{m}{|d_K|})^{\left(\frac{d_K}{m}\right)}\}^{w_{K}}\)
  • \(p=3\)인 경우
    \(\frac[[:틀:K]]{2\pi}=\frac{2^{2/3}}{\sqrt{6\pi}}(\frac{\Gamma(\frac{1}{3})}{\Gamma(\frac{2}{3})})^{3/2}\)
  • \(p=7\)인 경우
    \(\frac[[:틀:K]]{2\pi}=\frac{2}{\sqrt{14\pi}}\sqrt{\frac{\Gamma(\frac{1}{7})\Gamma(\frac{2}{7})\Gamma(\frac{4}{7})}{\Gamma(\frac{3}{7})\Gamma(\frac{5}{7})\Gamma(\frac{6}{7})}}\)

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그