Chowla-셀베르그 공식

수학노트
둘러보기로 가기 검색하러 가기
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

개요


엡슈타인 제타함수

\[\zeta_Q(s) =\sum_{(X,Y)\ne (0,0)}\frac{1}{(aX^2+bXY+cy^2)^s}\]



제1종 타원적분

\[\frac{K'}{K}(\frac{1}{\sqrt{2}})= 1 \Rightarrow K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots\] \[\frac{K'}{K}(\sqrt{2}-1)= \sqrt{2} \Rightarrow K(\sqrt{2}-1)=\frac{\sqrt{\sqrt{2}+1}}{2^{13/4}}B(\frac{1}{8},\frac{3}{8})=\frac{\sqrt{\sqrt{2}+1}\Gamma(\frac{1}{8})\Gamma(\frac{3}{8})}{2^{13/4}\sqrt{\pi}}\] \[\frac{K'}{K}\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)= \sqrt{3} \Rightarrow K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{4\sqrt[4]{3}\sqrt{\pi}}=1.5981420\cdots\]

  • lemniscate 곡선의 길이와 타원적분\[4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(\frac{1}{2},\frac{1}{4})=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}=5.24\cdots\]
  • 제1종타원적분 K (complete elliptic integral of the first kind)\[\int_0^1\frac{dx}{\sqrt{1-x^3}}=\frac{1}{3}B(\frac{1}{2},\frac{1}{3})=\frac{1}{6}B(\frac{1}{3},\frac{1}{6})\]\[6\int_{0}^{1} \frac{dx}{\sqrt{1-x^3}}=B(\frac{1}{3},\frac{1}{6})=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\Gamma(\frac{1}{2})}=\frac{\Gamma(\frac{1}{3})\Gamma(\frac{1}{6})}{\sqrt{\pi}}=8.413\cdots\]



Chowla-셀베르그의 정리

정리

\(k\)에 대하여, 다음의 값 \[i\frac{K'}{K}(k):=i\frac{K(\sqrt{1-k^2})}{K(k)}\] 이 \(d_F\)를 판별식으로 갖는 복소이차수체 \(F=\mathbb{Q}(\sqrt{d_F})\)의 원소일 때, 제1종타원적분 K에 대하여 다음이 성립한다 \[{K}(k)=\lambda\sqrt{\pi}\left(\prod_{m=1}^{|d_F|}\Gamma(\frac{m}{|d_F|})^{\left(\frac{d_F}{m}\right)}\right)^{\frac{w_{F}}{4h_{F}}}\] 여기서 \(\lambda\)는 적당한 대수적수.


특수한 경우

\[\frac{2K(k)}{\pi}=\frac{2^{1/3}(kk')^{-1/6}}{\sqrt{2\pi p}}\left(\prod_{m=1}^{|d_F|}\Gamma(\frac{m}{|d_F|})^{\left(\frac{d_F}{m}\right)}\right)^{w_{F}/4}\] 여기서 \(k\)는 \(\frac{K'}{K}(k)=\sqrt{p}\)의 해이고, \(k'=\sqrt{1-k^2}\).

  • \(p=3\)인 경우

\[\frac{2K\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)}{\pi}=\frac{2^{2/3}}{\sqrt{6\pi}}\left(\frac{\Gamma(\frac{1}{3})}{\Gamma(\frac{2}{3})}\right)^{3/2}\]

  • \(p=7\)인 경우

\[\frac{2K\left(\frac{1}{4} \sqrt{8-3 \sqrt{7}}\right)}{\pi}=\frac{2}{\sqrt{14\pi}}\sqrt{\frac{\Gamma(\frac{1}{7})\Gamma(\frac{2}{7})\Gamma(\frac{4}{7})}{\Gamma(\frac{3}{7})\Gamma(\frac{5}{7})\Gamma(\frac{6}{7})}}\]


증명의 아이디어

  • 복소 이차 수체 \(K\)의 데데킨트 제타함수 \(\zeta_K(s)\)의 \(s=1\)에서의 행동을 이해하여 얻어진다
  • \(d_K\)를 나누지 않는 소수 \(p\)에 대하여 \(\chi(p)=\left(\frac{d_K}{p}\right)\) 를 만족시키는 준동형사상 \(\chi \colon(\mathbb{Z}/d_K\mathbb{Z})^\times \to \mathbb C^{\times}\)
  • 디리클레 L-함수 \(L(s, \chi)\)
  • \(\zeta_K(s)\)는 다음과 같이 분해된다 (이차 수체의 데데킨트 제타함수 항목 참조)

\[\zeta_{K}(s)=\zeta(s)L(s,\chi)\]

  • \(s=1\)에서 다음이 성립한다

\[ \begin{align} \zeta(s)&=\frac{1}{s-1}+\gamma+\cdots \\ L(s,\chi)&=(\frac{2\pi h_K}{w_K \cdot \sqrt{|d_K|}})+\left(\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})\right)(s-1)+\cdots \end{align} \]

  • 따라서

\[ \zeta_{K}(s)=\frac{2 \pi h_K}{(s-1) w_K \sqrt{\left|d_K\right|}}+\frac{4 \pi \gamma h_K+2 \pi \log (2 \pi ) h_K-\pi w_K \sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})}{w_K \sqrt{\left|d_K\right|}}+O(s-1)+\cdots \]

  • 한편, \(\zeta_K(s)\)는 부분 데데킨트 제타함수의 합으로 쓰여진다

\[\zeta_{K}(s)=\sum_{A \in C_K}\zeta_{K}(s,A)\]

  • \(K\)가 복소 이차 수체일 때, \(\zeta_{K}(s,A)\)는 엡슈타인 제타함수가 되며, \(s=1\)에서의 행동은 크로네커 극한 공식으로 기술할 수 있다
  • 이렇게 두 가지 방법으로 얻어진 \(\zeta_{K}(s)\)의 \(s=1\)에서의 로랑전개의 상수항을 비교한다

메모



관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료


리뷰, 에세이, 강의노트

관련논문

관련도서

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'chowla'}, {'OP': '*'}, {'LOWER': 'selberg'}, {'LEMMA': 'formula'}]