"N차원 구면의 부피(면적)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
==이 항목의 수학노트 원문주소</h5>
+
==이 항목의 수학노트 원문주소==
  
 
 
 
 
5번째 줄: 5번째 줄:
 
 
 
 
  
==개요</h5>
+
==개요==
  
 
*  반지름 r인 (n)차원 구면(n-sphere)이란, (n+1)-차원 유클리드 공간에서 다음 등식을 만족시키는 점들의 집합, 또는 그 평행이동을 말함..<br><math>x_1^2+\cdots+x_{n+1}^2= r^2</math><br>
 
*  반지름 r인 (n)차원 구면(n-sphere)이란, (n+1)-차원 유클리드 공간에서 다음 등식을 만족시키는 점들의 집합, 또는 그 평행이동을 말함..<br><math>x_1^2+\cdots+x_{n+1}^2= r^2</math><br>
17번째 줄: 17번째 줄:
 
 
 
 
  
==공식의 유도</h5>
+
==공식의 유도==
  
 
* 반지름 1인 (n-1)-차원 구면의 부피를 <math>\omega_{n-1}</math> 라 두자
 
* 반지름 1인 (n-1)-차원 구면의 부피를 <math>\omega_{n-1}</math> 라 두자
29번째 줄: 29번째 줄:
 
 
 
 
  
==매개화를 이용한 방법</h5>
+
==매개화를 이용한 방법==
  
 
* [[n차원 구면의 매개화]]를 이용하여 다음의 점화식을 얻을 수 있다<br><math> \omega_{n}=\omega_{n-1}\left(\int_0^{\pi }\sin ^{n-1} \phi \, d\phi\right)=\omega_{n-1}\frac{\sqrt{\pi } \Gamma \left(\frac{n}{2}\right)}{\Gamma \left(\frac{n+1}{2}\right)}</math><br><math>\omega_1=2\pi </math><br>
 
* [[n차원 구면의 매개화]]를 이용하여 다음의 점화식을 얻을 수 있다<br><math> \omega_{n}=\omega_{n-1}\left(\int_0^{\pi }\sin ^{n-1} \phi \, d\phi\right)=\omega_{n-1}\frac{\sqrt{\pi } \Gamma \left(\frac{n}{2}\right)}{\Gamma \left(\frac{n+1}{2}\right)}</math><br><math>\omega_1=2\pi </math><br>
37번째 줄: 37번째 줄:
 
 
 
 
  
==반지름 1인 n-차원 구면의 부피로 주어진 수열</h5>
+
==반지름 1인 n-차원 구면의 부피로 주어진 수열==
  
 
<math>2 \pi ,4 \pi ,2 \pi ^2,\frac{8 \pi ^2}{3},\pi ^3,\frac{16 \pi ^3}{15},\frac{\pi ^4}{3},\frac{32 \pi ^4}{105},\frac{\pi ^5}{12},\frac{64 \pi ^5}{945},\cdots</math>
 
<math>2 \pi ,4 \pi ,2 \pi ^2,\frac{8 \pi ^2}{3},\pi ^3,\frac{16 \pi ^3}{15},\frac{\pi ^4}{3},\frac{32 \pi ^4}{105},\frac{\pi ^5}{12},\frac{64 \pi ^5}{945},\cdots</math>
47번째 줄: 47번째 줄:
 
 
 
 
  
==역사</h5>
+
==역사==
  
 
 
 
 
58번째 줄: 58번째 줄:
 
 
 
 
  
==메모</h5>
+
==메모==
  
 
 
 
 
68번째 줄: 68번째 줄:
 
 
 
 
  
==관련된 항목들</h5>
+
==관련된 항목들==
  
 
 
 
 
74번째 줄: 74번째 줄:
 
 
 
 
  
==수학용어번역</h5>
+
==수학용어번역==
  
 
*  단어사전<br>
 
*  단어사전<br>
91번째 줄: 91번째 줄:
 
 
 
 
  
==매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxYnBDekFmdU5wU1k/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxYnBDekFmdU5wU1k/edit
106번째 줄: 106번째 줄:
 
 
 
 
  
==사전 형태의 자료</h5>
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
118번째 줄: 118번째 줄:
 
 
 
 
  
==리뷰논문, 에세이, 강의노트</h5>
+
==리뷰논문, 에세이, 강의노트==
  
 
 
 
 
126번째 줄: 126번째 줄:
 
 
 
 
  
==관련논문</h5>
+
==관련논문==
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
136번째 줄: 136번째 줄:
 
 
 
 
  
==관련도서</h5>
+
==관련도서==
  
 
*  도서내검색<br>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
** http://book.daum.net/search/contentSearch.do?query=

2012년 11월 1일 (목) 10:06 판

이 항목의 수학노트 원문주소

 

 

개요

  • 반지름 r인 (n)차원 구면(n-sphere)이란, (n+1)-차원 유클리드 공간에서 다음 등식을 만족시키는 점들의 집합, 또는 그 평행이동을 말함..
    \(x_1^2+\cdots+x_{n+1}^2= r^2\)
  • 1차원 구면의 부피(즉 길이)는 \(2\pi r\)
  • 2차원 구면의 부피(즉 넓이)는 \(4\pi r^2\)
  • 반지름이 1로 주어진 (n-1)차원 구면의 부피 \(\omega_{n-1}\)는 얼마가 될까?
    \( \omega_{n-1}=\frac{2\pi^{n/2}}{\Gamma \left(\frac{n}{2}\right)}\)
  • n차원 공의 부피 항목과는 다른 수학적 대상을 다루고 있음

 

 

공식의 유도

  • 반지름 1인 (n-1)-차원 구면의 부피를 \(\omega_{n-1}\) 라 두자
  • 원점에서의 거리 \(r=\sqrt{x_1^2+\cdots+x_n^2}\)에만 의존하는 (적당한) 임의의 함수 \(f(r)\) 를 생각하자.
  • \(I_n(f)=\int _{-\infty }^{\infty }\cdots \int _{-\infty }^{\infty }f(r) dx_1\cdots dx_n\) 라 두면, \(I_n(f)=\omega_{n-1}\int_{0}^{\infty}f(r)r^{n-1}dr\) 이 성립한다. 즉,
    \(\omega_{n-1}=\frac{I_n(f)}{\int_{0}^{\infty}f(r)r^{n-1}dr}\)
  • 임의의 \(f(r)\)에 대하여 성립하므로, \(f(r)=e^{-r^2}\) 로 두자. 다음을 안다.
    \(I_n(f)=\int _{-\infty }^{\infty }\cdots \int _{-\infty }^{\infty }e^{-r^2} dx_1\cdots dx_n = \pi^{n/2}\) ( 가우시안 적분 항목 참조)
    \(\int_{0}^{\infty}r^{n-1}e^{-r^2}dx=\frac{1}{2}\Gamma(\frac{n}{2})\)
  • 따라서 구면의 부피는 다음과 같다
    \( \omega_{n-1}=\frac{2\pi^{n/2}}{\Gamma \left(\frac{n}{2}\right)}\)

 

 

매개화를 이용한 방법

  • n차원 구면의 매개화를 이용하여 다음의 점화식을 얻을 수 있다
    \( \omega_{n}=\omega_{n-1}\left(\int_0^{\pi }\sin ^{n-1} \phi \, d\phi\right)=\omega_{n-1}\frac{\sqrt{\pi } \Gamma \left(\frac{n}{2}\right)}{\Gamma \left(\frac{n+1}{2}\right)}\)
    \(\omega_1=2\pi \)

 

 

반지름 1인 n-차원 구면의 부피로 주어진 수열

\(2 \pi ,4 \pi ,2 \pi ^2,\frac{8 \pi ^2}{3},\pi ^3,\frac{16 \pi ^3}{15},\frac{\pi ^4}{3},\frac{32 \pi ^4}{105},\frac{\pi ^5}{12},\frac{64 \pi ^5}{945},\cdots\)

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서