"Theta functions in affine Kac-Moody algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 16개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
===notation===
 
===notation===
* let $k\in \mathbb{Z}_{\geq 1}$ be the level
+
* Let <math>M=Q^{\vee}</math>. This is also the <math>\mathbb{Z}</math>-span of <math>W\theta</math> where <math>\theta</math> is the highest root
* Let $M=Q^{\vee}$. This is also the $\mathbb{Z}$-span of $W\theta$ where $\theta$ is the highest root
+
* for <math>\gamma\in M</math>, define <math>t_{\gamma} : \mathfrak{h}^{*}\to \mathfrak{h}^{*}</math> by
* for $\gamma\in M$, define $t_{\gamma} : \mathfrak{h}^{*}\to \mathfrak{h}^{*}$ by
+
:<math>t_{\gamma}(\lambda)=\lambda+\lambda(c)\gamma-\left(\frac{1}{2}\lambda(c)|\gamma|^2+(\gamma,\lambda)\right)\delta </math>
$$t_{\gamma}(\lambda)=\lambda+\lambda(c)\gamma-\left(\frac{1}{2}\lambda(c)|\gamma|^2+(\gamma,\lambda)\right)\delta $$
 
* note $\lambda=\bar{\lambda}+k\Lambda_0$
 
* note that $|\lambda|^2=|\bar{\lambda}|^2$
 
 
;definition
 
;definition
$$
+
Let <math>k\in \mathbb{Z}_{\geq 1}</math> be the level of <math>\lambda</math>. Note <math>\lambda=\bar{\lambda}+k\Lambda_0+\xi\delta</math>. and <math>|\lambda|^2=|\bar{\lambda}|^2+2k\xi</math>. The theta function is defined by
 +
:<math>
 
\begin{align}
 
\begin{align}
\Theta_{k,\lambda} &=e^{-\frac{|\bar{\lambda}|^2\delta}{2k}}\sum_{\gamma \in M}e^{t_{\gamma}(\lambda)} \\
+
\Theta_{k,\lambda} &=e^{-\frac{|\lambda|^2\delta}{2k}}\sum_{\gamma \in M}e^{t_{\gamma}(\lambda)} \\
 +
&=e^{-\frac{|\lambda|^2\delta}{2k}}e^{\lambda}\sum_{\gamma \in M}e^{k\gamma}q^{\frac{k(\gamma,\gamma)}{2}+(\gamma,\lambda)}\\
 +
&=e^{\lambda}\sum_{\gamma \in M}e^{k\gamma}q^{\frac{1}{2k}(k\gamma+\lambda,k\gamma+\lambda)}
 +
\end{align}
 +
</math>
 +
We also have
 +
:<math>
 +
\begin{align}
 +
\Theta_{k,\lambda} &=e^{-\frac{|\lambda|^2\delta}{2k}}\sum_{\gamma \in M}e^{t_{\gamma}(\lambda)} \\
 
&=e^{k\Lambda_0}\sum_{\mu\in Q^{\vee}+\frac{\bar{\lambda}}{k}}e^{k\mu-\frac{1}{2}k( \mu,\mu ) \delta}\\
 
&=e^{k\Lambda_0}\sum_{\mu\in Q^{\vee}+\frac{\bar{\lambda}}{k}}e^{k\mu-\frac{1}{2}k( \mu,\mu ) \delta}\\
 
&=e^{k\Lambda_0}\sum_{\mu\in Q^{\vee}+\frac{\bar{\lambda}}{k}}e^{k\mu}q^{\frac{k}{2}( \mu,\mu )}
 
&=e^{k\Lambda_0}\sum_{\mu\in Q^{\vee}+\frac{\bar{\lambda}}{k}}e^{k\mu}q^{\frac{k}{2}( \mu,\mu )}
 
\end{align}
 
\end{align}
$$
+
</math>
 +
 
 +
===analytic function===
 +
* FMS 605p, (14.318)
 +
* let <math>(\zeta;\tau;t)=\zeta+ \tau \Lambda_0+ t\delta\in \mathfrak{h}^{*}</math>
 +
* once we evaluate them at <math>\xi=-2\pi i (\zeta;\tau;t)</math>, we get
 +
:<math>
 +
\Theta_{\lambda}^{(k)}(\zeta,\tau,t)=e^{-2\pi i k t}\sum_{\alpha^{\vee}\in Q^{\vee}}e^{-2\pi i k (\alpha^{\vee}+\lambda/k,\zeta)}e^{i\pi k \tau |\alpha^{\vee}+\lambda/k|^2}
 +
</math>
 +
;thm
 +
:<math>
 +
\Theta_{\lambda}^{(k)}(\frac{\zeta}{\tau},-\frac{1}{\tau},t+\frac{|\zeta|^2}{2\tau})=(-\frac{i \tau}{k})^{r/2}\frac{1}{\operatorname{vol}(Q^{\vee})}\sum_{\mu\in P/k Q^{\vee}}e^{-2\pi i (\mu,\nu)/k} \Theta_{\mu}^{(k)}(\zeta,\tau,t)
 +
</math>
  
==$A_1$ example==
+
==<math>A_1</math> example==
* level k=1, $\lambda=0$
+
* let <math>z=e^{-\alpha_1}</math>
* let $z=e^{-\alpha_1}$
+
===level k=1===
$$
+
* <math>\lambda=0</math>
 +
:<math>
 
\Theta_{1,0}=1 + q (1/z + z) + q^4 (1/z^2 + z^2) + q^9 (1/z^3 + z^3)+\cdots
 
\Theta_{1,0}=1 + q (1/z + z) + q^4 (1/z^2 + z^2) + q^9 (1/z^3 + z^3)+\cdots
$$
+
</math>
 
 
  
 
==related items==
 
==related items==
 +
* [[Kac-Peterson modular S-matrix]]
 
* [[Affine Weyl group]]
 
* [[Affine Weyl group]]
 
* [[Theta functions]]
 
* [[Theta functions]]
 +
* [[Cube root of the j-invariant and E8]]
  
 
==computational resource==
 
==computational resource==
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxbW9iUTgtaThCM2s/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxbW9iUTgtaThCM2s/edit
 +
 +
 +
[[분류:math and physics]]
 +
[[분류:Lie theory]]
 +
[[분류:migrate]]

2020년 11월 16일 (월) 05:34 기준 최신판

introduction

notation

  • Let \(M=Q^{\vee}\). This is also the \(\mathbb{Z}\)-span of \(W\theta\) where \(\theta\) is the highest root
  • for \(\gamma\in M\), define \(t_{\gamma} : \mathfrak{h}^{*}\to \mathfrak{h}^{*}\) by

\[t_{\gamma}(\lambda)=\lambda+\lambda(c)\gamma-\left(\frac{1}{2}\lambda(c)|\gamma|^2+(\gamma,\lambda)\right)\delta \]

definition

Let \(k\in \mathbb{Z}_{\geq 1}\) be the level of \(\lambda\). Note \(\lambda=\bar{\lambda}+k\Lambda_0+\xi\delta\). and \(|\lambda|^2=|\bar{\lambda}|^2+2k\xi\). The theta function is defined by \[ \begin{align} \Theta_{k,\lambda} &=e^{-\frac{|\lambda|^2\delta}{2k}}\sum_{\gamma \in M}e^{t_{\gamma}(\lambda)} \\ &=e^{-\frac{|\lambda|^2\delta}{2k}}e^{\lambda}\sum_{\gamma \in M}e^{k\gamma}q^{\frac{k(\gamma,\gamma)}{2}+(\gamma,\lambda)}\\ &=e^{\lambda}\sum_{\gamma \in M}e^{k\gamma}q^{\frac{1}{2k}(k\gamma+\lambda,k\gamma+\lambda)} \end{align} \] We also have \[ \begin{align} \Theta_{k,\lambda} &=e^{-\frac{|\lambda|^2\delta}{2k}}\sum_{\gamma \in M}e^{t_{\gamma}(\lambda)} \\ &=e^{k\Lambda_0}\sum_{\mu\in Q^{\vee}+\frac{\bar{\lambda}}{k}}e^{k\mu-\frac{1}{2}k( \mu,\mu ) \delta}\\ &=e^{k\Lambda_0}\sum_{\mu\in Q^{\vee}+\frac{\bar{\lambda}}{k}}e^{k\mu}q^{\frac{k}{2}( \mu,\mu )} \end{align} \]

analytic function

  • FMS 605p, (14.318)
  • let \((\zeta;\tau;t)=\zeta+ \tau \Lambda_0+ t\delta\in \mathfrak{h}^{*}\)
  • once we evaluate them at \(\xi=-2\pi i (\zeta;\tau;t)\), we get

\[ \Theta_{\lambda}^{(k)}(\zeta,\tau,t)=e^{-2\pi i k t}\sum_{\alpha^{\vee}\in Q^{\vee}}e^{-2\pi i k (\alpha^{\vee}+\lambda/k,\zeta)}e^{i\pi k \tau |\alpha^{\vee}+\lambda/k|^2} \]

thm

\[ \Theta_{\lambda}^{(k)}(\frac{\zeta}{\tau},-\frac{1}{\tau},t+\frac{|\zeta|^2}{2\tau})=(-\frac{i \tau}{k})^{r/2}\frac{1}{\operatorname{vol}(Q^{\vee})}\sum_{\mu\in P/k Q^{\vee}}e^{-2\pi i (\mu,\nu)/k} \Theta_{\mu}^{(k)}(\zeta,\tau,t) \]

\(A_1\) example

  • let \(z=e^{-\alpha_1}\)

level k=1

  • \(\lambda=0\)

\[ \Theta_{1,0}=1 + q (1/z + z) + q^4 (1/z^2 + z^2) + q^9 (1/z^3 + z^3)+\cdots \]

related items

computational resource