복소 이차 수체의 데데킨트 제타함수 special values

수학노트
둘러보기로 가기 검색하러 가기

개요


\(s=1\) 에서의 값


\(q \equiv 3 \pmod{4}\)

  • \(K=\mathbb{Q}(\sqrt{-q})\), \(q \geq 7\) , \(q \equiv 3 \pmod{4}\) 인 경우
  • \(d_K=-q\)
  • \(\chi(a)=\left(\frac{a}{q}\right)\)
  • \(\chi(-1)=-1\), \(\tau(\chi)=i\sqrt{q}\)
  • 다음이 성립한다

\[L(1,\chi)= \frac{- \pi\sqrt{q}}{q^2}\sum_{a=1}^{q-1}\left(\frac{a}{q}\right) a=\frac{\pi h_K}{\sqrt{q}}\] \[h_K=-\sum_{a=1}^{q-1}\left(\frac{a}{q}\right)\frac{a}{q}\]

\(q \equiv 1 \pmod{4}\)

  • \(K=\mathbb{Q}(\sqrt{-q})\) , \(q \geq 5\) , \(q \equiv 1 \pmod{4}\) 인 경우
  • \(d_K=-4q\), \(\chi(-1)=-1\), \(\tau(\chi)=2i\sqrt{q}\)
  • 다음이 성립한다

\[L(1,\chi)= -\frac{ \pi\sqrt{q}}{8q^2}\sum_{(a,4q)=1}\chi(a) a=\frac{\pi h_K}{2\sqrt{q}}\] \[h_K=-\frac{1}{4}\sum_{(a,4q)=1}\left(\frac{a}{q}\right)\frac{a}{q}\]



\(s=2\) 에서의 값

  • 복소이차수체 \(K\)에 대하여 다음이 성립한다

\[\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})\]

  • 예를 들어, \(K=\mathbb{Q}\sqrt{-7}\)에 대하여, 다음이 성립한다

\[\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))\] 여기서 \(D(z)\)는 블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)

\[\zeta_{\mathbb{Q}\sqrt{-1}}(2)=1.50670301\] \[\zeta_{\mathbb{Q}\sqrt{-2}}(2)=1.75141751\cdots\] \[\zeta_{\mathbb{Q}\sqrt{-3}}(2)=\frac{\pi^2}{6\sqrt{3}}(D(e^{2\pi i/3})-D(e^{4\pi i/3}))=\frac{\pi^2}{3\sqrt{3}}D(e^{2\pi i/3})=1.285190955484149\cdots\] \[\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=1.89484145\] \[\zeta_{\mathbb{Q}\sqrt{-11}}(2)=1.49613186\]



figure eight knot complement

  • \(V=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots\)
  • \(\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=\frac{\pi^2}{3\sqrt{3}}D(e^{\frac{2\pi i}{3}})\)
  • \(L_{-3}(2)=\frac{2}{\sqrt{3}}D(e^{\frac{2\pi i}{3}})\)
  • 2.02988321281930725

\[V(4_{1})=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots\]




메모

  • \(s=1\) 에서의 \(L_{d_K}'(1)\)의 값\[L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})\]
  • L-함수의 미분 항목 참조



관련된 항목들


매스매티카 파일 및 계산 리소스