"삼각함수의 값"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
 
 
* [[삼각함수의 값]]
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 
  
 
* 유리수<math>a\in\mathbb{Q}</math>에 대하여 <math>x=a\pi</math>일 때 삼각함수의 값을 구하는 문제는 수학적으로 많이 연구되어 왔음
 
* 유리수<math>a\in\mathbb{Q}</math>에 대하여 <math>x=a\pi</math>일 때 삼각함수의 값을 구하는 문제는 수학적으로 많이 연구되어 왔음
 
* [[원분다항식(cyclotomic polynomial)]]의 해와 깊은 관련이 있어, 본질적으로는 대수방정식을 푸는 문제로 이해할 수 있음
 
* [[원분다항식(cyclotomic polynomial)]]의 해와 깊은 관련이 있어, 본질적으로는 대수방정식을 푸는 문제로 이해할 수 있음
 
*  가령 [[가우스와 정17각형의 작도]]는 다음과 같은 코사인 값을 얻는 것과 같은 문제<br><math>\cos \frac{2\pi}{17}= \frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+  \sqrt{68+12\sqrt{17}-4{\sqrt{170+38\sqrt{17}}}} }{16}</math><br>
 
*  가령 [[가우스와 정17각형의 작도]]는 다음과 같은 코사인 값을 얻는 것과 같은 문제<br><math>\cos \frac{2\pi}{17}= \frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+  \sqrt{68+12\sqrt{17}-4{\sqrt{170+38\sqrt{17}}}} }{16}</math><br>
* [[정다각형의 대각선의 길이]]  문제와 깊은 연관
+
* [[정다각형의 대각선의 길이]] 문제와 깊은 연관
  
 
+
  
 
+
  
<h5>구하는 방법의 분류</h5>
+
==구하는 방법의 분류==
  
 
* 중학교 수준에서는 이등변삼각형과 정삼각형에 대해 [[피타고라스의 정리]]를 사용하여 몇 가지 경우를 계산할 수 있음
 
* 중학교 수준에서는 이등변삼각형과 정삼각형에 대해 [[피타고라스의 정리]]를 사용하여 몇 가지 경우를 계산할 수 있음
 
* 더 일반적으로는 <math>x^n-1=0</math> 방정식의 복소수해를 구하여 실수부와 허수부로부터 <math>\theta=m\pi/n</math>인 경우의 코사인과 사인값을 얻을 수 있음
 
* 더 일반적으로는 <math>x^n-1=0</math> 방정식의 복소수해를 구하여 실수부와 허수부로부터 <math>\theta=m\pi/n</math>인 경우의 코사인과 사인값을 얻을 수 있음
  
 
+
  
 
+
  
 
+
  
<h5>삼각함수의 값 : 예</h5>
+
==삼각함수의 값 : 예==
  
 
<math>\cos {\frac{2\pi}{1}} = 1</math>
 
<math>\cos {\frac{2\pi}{1}} = 1</math>
41번째 줄: 33번째 줄:
 
<math>\cos\frac{2\pi}{5}=\frac{\sqrt5 -1}{4}</math>
 
<math>\cos\frac{2\pi}{5}=\frac{\sqrt5 -1}{4}</math>
  
* [[정오각형]], [[황금비]]
+
* [[정오각형]], [[황금비]]
  
 
<math>\cos\frac{2\pi}{6}=\frac{1}{2}</math>
 
<math>\cos\frac{2\pi}{6}=\frac{1}{2}</math>
55번째 줄: 47번째 줄:
 
* [[가우스와 정17각형의 작도]]
 
* [[가우스와 정17각형의 작도]]
  
 
+
  
 
<math>\cos\frac{\pi}{4}=\cos\frac{\pi}{2^2}= \frac{\sqrt{2}}{2}</math>
 
<math>\cos\frac{\pi}{4}=\cos\frac{\pi}{2^2}= \frac{\sqrt{2}}{2}</math>
69번째 줄: 61번째 줄:
 
<math>\tan \frac{\pi}{8}=\sqrt{2}-1</math>
 
<math>\tan \frac{\pi}{8}=\sqrt{2}-1</math>
  
 
+
  
 
+
  
 
+
  
<h5>삼각함수의 값과 무리수</h5>
+
==삼각함수의 값과 무리수==
  
 
* [[삼각함수의 유리수 값|삼각함수의 값과 무리수]]
 
* [[삼각함수의 유리수 값|삼각함수의 값과 무리수]]
  
 
+
  
 
+
  
<h5>역사</h5>
+
==역사==
  
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
  
 
+
  
 
+
  
<h5>메모</h5>
+
==메모==
  
 
+
  
 
+
  
<h5>관련된 항목들</h5>
+
==관련된 항목들==
  
 
* [[가우스와 정17각형의 작도]]
 
* [[가우스와 정17각형의 작도]]
105번째 줄: 97번째 줄:
 
* [[무리수와 초월수]]
 
* [[무리수와 초월수]]
  
 
+
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 
 
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
  
<h5>사전 형태의 자료</h5>
+
 +
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
* [http://en.wikipedia.org/wiki/Exact_trigonometric_constants ]http://en.wikipedia.org/wiki/Exact_trigonometric_constants
+
* http://en.wikipedia.org/wiki/Exact_trigonometric_constants
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
 
 
 
 
 
 
 
<h5>관련논문</h5>
 
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://dx.doi.org/
 
 
 
 
 
 
 
<h5>관련도서 및 추천도서</h5>
 
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
 
 
 
<h5>관련기사</h5>
 
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
 
 
 
<h5>블로그</h5>
 
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://math.dongascience.com/ 수학동아]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 
* [http://betterexplained.com/ BetterExplained]
 

2012년 10월 12일 (금) 15:11 판

개요

  • 유리수\(a\in\mathbb{Q}\)에 대하여 \(x=a\pi\)일 때 삼각함수의 값을 구하는 문제는 수학적으로 많이 연구되어 왔음
  • 원분다항식(cyclotomic polynomial)의 해와 깊은 관련이 있어, 본질적으로는 대수방정식을 푸는 문제로 이해할 수 있음
  • 가령 가우스와 정17각형의 작도는 다음과 같은 코사인 값을 얻는 것과 같은 문제
    \(\cos \frac{2\pi}{17}= \frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+ \sqrt{68+12\sqrt{17}-4{\sqrt{170+38\sqrt{17}}}} }{16}\)
  • 정다각형의 대각선의 길이 문제와 깊은 연관



구하는 방법의 분류

  • 중학교 수준에서는 이등변삼각형과 정삼각형에 대해 피타고라스의 정리를 사용하여 몇 가지 경우를 계산할 수 있음
  • 더 일반적으로는 \(x^n-1=0\) 방정식의 복소수해를 구하여 실수부와 허수부로부터 \(\theta=m\pi/n\)인 경우의 코사인과 사인값을 얻을 수 있음




삼각함수의 값 : 예

\(\cos {\frac{2\pi}{1}} = 1\)

\(\cos {\frac{2\pi}{2}} = -1\)

\(\cos {\frac{2\pi}{3}} = -\frac{1}{2}\)

\(\cos\frac{2\pi}{4}=0\)

\(\cos\frac{2\pi}{5}=\frac{\sqrt5 -1}{4}\)

\(\cos\frac{2\pi}{6}=\frac{1}{2}\)

\(\cos\frac{2\pi}{7}=\frac{-1+\sqrt[3]{\frac{7}{2} \left(1-3 \sqrt{-3}\right)}+\sqrt[3]{\frac{7}{2} \left(1+3 \sqrt{-3}\right)}}{6}\)

  • \(x^3 + x^2 - 2 x - 1=0\) 을 풀어야 함

\(\cos\frac{2\pi}{8}=\frac{\sqrt{2}}{2}\)

\(\cos \frac{2\pi}{17}= \frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+ \sqrt{68+12\sqrt{17}-4{\sqrt{170+38\sqrt{17}}}} }{16}\)


\(\cos\frac{\pi}{4}=\cos\frac{\pi}{2^2}= \frac{\sqrt{2}}{2}\)

\(\cos \frac{\pi}{8}=\cos\frac{\pi}{2^3}= \frac{\sqrt{2+\sqrt{2}}}{2}\)

\(\cos \frac{\pi}{16}=\cos\frac{\pi}{2^4}= \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2}\)

\(\cos \frac{\pi}{32}=\cos\frac{\pi}{2^5}= \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2}\)

\(\cos \frac{\pi}{64}=\cos\frac{\pi}{2^6}= \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}{2}\)

\(\tan \frac{\pi}{8}=\sqrt{2}-1\)




삼각함수의 값과 무리수



역사



메모

관련된 항목들



사전 형태의 자료