"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
9번째 줄: 9번째 줄:
 
* [http://en.wikipedia.org/wiki/1617 1617] - [http://en.wikipedia.org/wiki/Henry_Briggs_%28mathematician%29 Henry Briggs] discusses decimal logarithms in <em style="">Logarithmorum Chilias Prima</em>,
 
* [http://en.wikipedia.org/wiki/1617 1617] - [http://en.wikipedia.org/wiki/Henry_Briggs_%28mathematician%29 Henry Briggs] discusses decimal logarithms in <em style="">Logarithmorum Chilias Prima</em>,
 
* [http://en.wikipedia.org/wiki/1618 1618] - 네이피어가 로그와 관련한 작업을 통하여 [[자연상수 e|자연상수]]에 대한 첫번째 출판을 함
 
* [http://en.wikipedia.org/wiki/1618 1618] - 네이피어가 로그와 관련한 작업을 통하여 [[자연상수 e|자연상수]]에 대한 첫번째 출판을 함
* [http://en.wikipedia.org/wiki/1619 1619] - [http://en.wikipedia.org/wiki/Ren%C3%A9_Descartes René Descartes] discovers [http://en.wikipedia.org/wiki/Analytic_geometry analytic geometry] ([http://en.wikipedia.org/wiki/Pierre_de_Fermat Pierre de Fermat] claimed that he also discovered it independently),
+
* [http://en.wikipedia.org/wiki/1619 1619] - 데카르트가 해석기하학을 발견 ([http://en.wikipedia.org/wiki/Pierre_de_Fermat Pierre de Fermat] claimed that he also discovered it independently),
 
* [http://en.wikipedia.org/wiki/1619 1619] - [http://en.wikipedia.org/wiki/Johannes_Kepler Johannes Kepler] discovers two of the [http://en.wikipedia.org/wiki/Kepler-Poinsot_polyhedra Kepler-Poinsot polyhedra].
 
* [http://en.wikipedia.org/wiki/1619 1619] - [http://en.wikipedia.org/wiki/Johannes_Kepler Johannes Kepler] discovers two of the [http://en.wikipedia.org/wiki/Kepler-Poinsot_polyhedra Kepler-Poinsot polyhedra].
 
* [http://en.wikipedia.org/wiki/1629 1629] - 페르마가 기초적인 미분학을 발전시킴
 
* [http://en.wikipedia.org/wiki/1629 1629] - 페르마가 기초적인 미분학을 발전시킴
72번째 줄: 72번째 줄:
 
* [http://en.wikipedia.org/wiki/1824 1824] - [http://en.wikipedia.org/wiki/Niels_Henrik_Abel Niels Henrik Abel] partially proves the [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem Abel–Ruffini theorem] that the general [http://en.wikipedia.org/wiki/Quintic_equation quintic] or higher equations cannot be solved by a general formula involving only arithmetical operations and roots,
 
* [http://en.wikipedia.org/wiki/1824 1824] - [http://en.wikipedia.org/wiki/Niels_Henrik_Abel Niels Henrik Abel] partially proves the [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem Abel–Ruffini theorem] that the general [http://en.wikipedia.org/wiki/Quintic_equation quintic] or higher equations cannot be solved by a general formula involving only arithmetical operations and roots,
 
* [http://en.wikipedia.org/wiki/1825 1825] - Augustin-Louis Cauchy presents the [http://en.wikipedia.org/wiki/Cauchy_integral_theorem Cauchy integral theorem] for general integration paths -- he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis],
 
* [http://en.wikipedia.org/wiki/1825 1825] - Augustin-Louis Cauchy presents the [http://en.wikipedia.org/wiki/Cauchy_integral_theorem Cauchy integral theorem] for general integration paths -- he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis],
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet Johann Peter Gustav Lejeune Dirichlet] and 르장드르가 <em style="">n</em> = 5인 경우에
+
* [http://en.wikipedia.org/wiki/1825 1825] - 디리클레와 르장드르가 <em style="">n</em> = 5인 경우에 대해 [[페르마의 마지막 정리]]를 증명
 
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Andre_Marie_Ampere André-Marie Ampère] discovers [http://en.wikipedia.org/wiki/Stokes%27_theorem Stokes' theorem],
 
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Andre_Marie_Ampere André-Marie Ampère] discovers [http://en.wikipedia.org/wiki/Stokes%27_theorem Stokes' theorem],
 
* [http://en.wikipedia.org/wiki/1828 1828] - George Green proves [http://en.wikipedia.org/wiki/Green%27s_theorem Green's theorem],
 
* [http://en.wikipedia.org/wiki/1828 1828] - George Green proves [http://en.wikipedia.org/wiki/Green%27s_theorem Green's theorem],
83번째 줄: 83번째 줄:
 
* [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem],
 
* [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem],
 
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/w/index.php?title=Pierre-Alphonse_Laurent&action=edit&redlink=1 Pierre-Alphonse Laurent] discovers and presents the Laurent expansion theorem,
 
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/w/index.php?title=Pierre-Alphonse_Laurent&action=edit&redlink=1 Pierre-Alphonse Laurent] discovers and presents the Laurent expansion theorem,
* [http://en.wikipedia.org/wiki/1843 1843] - [http://en.wikipedia.org/wiki/William_Rowan_Hamilton William Hamilton] discovers the calculus of [http://en.wikipedia.org/wiki/Quaternion quaternions] and deduces that they are non-commutative,
+
* [http://en.wikipedia.org/wiki/1843 1843] - 해밀턴이 
 
* [http://en.wikipedia.org/wiki/1847 1847] - [http://en.wikipedia.org/wiki/George_Boole George Boole] formalizes [http://en.wikipedia.org/wiki/Symbolic_logic symbolic logic] in <em style="">The Mathematical Analysis of Logic</em>, defining what is now called [http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29 Boolean algebra],
 
* [http://en.wikipedia.org/wiki/1847 1847] - [http://en.wikipedia.org/wiki/George_Boole George Boole] formalizes [http://en.wikipedia.org/wiki/Symbolic_logic symbolic logic] in <em style="">The Mathematical Analysis of Logic</em>, defining what is now called [http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29 Boolean algebra],
 
* [http://en.wikipedia.org/wiki/1849 1849] - [http://en.wikipedia.org/wiki/George_Gabriel_Stokes George Gabriel Stokes] shows that [http://en.wikipedia.org/wiki/Soliton solitary waves] can arise from a combination of periodic waves,
 
* [http://en.wikipedia.org/wiki/1849 1849] - [http://en.wikipedia.org/wiki/George_Gabriel_Stokes George Gabriel Stokes] shows that [http://en.wikipedia.org/wiki/Soliton solitary waves] can arise from a combination of periodic waves,
91번째 줄: 91번째 줄:
 
* [http://en.wikipedia.org/wiki/1854 1854] - [http://en.wikipedia.org/wiki/Arthur_Cayley Arthur Cayley] shows that [http://en.wikipedia.org/wiki/Quaternion quaternions] can be used to represent rotations in four-dimensional [http://en.wikipedia.org/wiki/Space space],
 
* [http://en.wikipedia.org/wiki/1854 1854] - [http://en.wikipedia.org/wiki/Arthur_Cayley Arthur Cayley] shows that [http://en.wikipedia.org/wiki/Quaternion quaternions] can be used to represent rotations in four-dimensional [http://en.wikipedia.org/wiki/Space space],
 
* 1858 - 뫼비우스가 [[#|뫼비우스의 띠]]를 발견
 
* 1858 - 뫼비우스가 [[#|뫼비우스의 띠]]를 발견
* [http://en.wikipedia.org/wiki/1859 1859] - Bernhard Riemann formulates the [http://en.wikipedia.org/wiki/Riemann_hypothesis Riemann hypothesis] which has strong implications about the distribution of [http://en.wikipedia.org/wiki/Prime_number prime numbers],
+
* [http://en.wikipedia.org/wiki/1859 1859] - 리만이 [[리만가설]]을 발표
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
 
* [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Charles_Hermite Charles Hermite] proves that [http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 e] is transcendental, [[#|자연상수 e는 초월수이다]]
 
* [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Charles_Hermite Charles Hermite] proves that [http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 e] is transcendental, [[#|자연상수 e는 초월수이다]]

2009년 9월 18일 (금) 16:52 판

 

17세기


18세기


19세기


20세기

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상