"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
13번째 줄: 13번째 줄:
 
* [http://en.wikipedia.org/wiki/1629 1629] - 페르마가 기초적인 미분학을 발전시킴
 
* [http://en.wikipedia.org/wiki/1629 1629] - 페르마가 기초적인 미분학을 발전시킴
 
* [http://en.wikipedia.org/wiki/1634 1634] - [http://en.wikipedia.org/wiki/Gilles_de_Roberval Gilles de Roberval] shows that the area under a [http://en.wikipedia.org/wiki/Cycloid cycloid] is three times the area of its generating circle,
 
* [http://en.wikipedia.org/wiki/1634 1634] - [http://en.wikipedia.org/wiki/Gilles_de_Roberval Gilles de Roberval] shows that the area under a [http://en.wikipedia.org/wiki/Cycloid cycloid] is three times the area of its generating circle,
* [http://en.wikipedia.org/wiki/1636 1636] - [http://en.wikipedia.org/wiki/Muhammad_Baqir_Yazdi Muhammad Baqir Yazdi] jointly discovered the pair of [http://en.wikipedia.org/wiki/Amicable_number amicable numbers] 9,363,584 and 9,437,056 along with [http://en.wikipedia.org/wiki/Descartes Descartes] (1636).<sup id="cite_ref-5" style="">[http://en.wikipedia.org/wiki/Timeline_of_mathematics#cite_note-5 [6]]</sup>
+
* [http://en.wikipedia.org/wiki/1636 1636] - [http://en.wikipedia.org/wiki/Muhammad_Baqir_Yazdi Muhammad Baqir Yazdi] jointly discovered the pair of [http://en.wikipedia.org/wiki/Amicable_number amicable numbers] 9,363,584 and 9,437,056 along with [http://en.wikipedia.org/wiki/Descartes Descartes] (1636)
 
* [http://en.wikipedia.org/wiki/1637 1637] - Pierre de Fermat claims to have proven [http://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem Fermat's Last Theorem] in his copy of [http://en.wikipedia.org/wiki/Diophantus Diophantus]' <em style="">Arithmetica</em>,
 
* [http://en.wikipedia.org/wiki/1637 1637] - Pierre de Fermat claims to have proven [http://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem Fermat's Last Theorem] in his copy of [http://en.wikipedia.org/wiki/Diophantus Diophantus]' <em style="">Arithmetica</em>,
 
* [http://en.wikipedia.org/wiki/1637 1637] - First use of the term [http://en.wikipedia.org/wiki/Imaginary_number imaginary number] by [http://en.wikipedia.org/wiki/Ren%C3%A9_Descartes René Descartes]; it was meant to be derogatory.
 
* [http://en.wikipedia.org/wiki/1637 1637] - First use of the term [http://en.wikipedia.org/wiki/Imaginary_number imaginary number] by [http://en.wikipedia.org/wiki/Ren%C3%A9_Descartes René Descartes]; it was meant to be derogatory.
* [http://en.wikipedia.org/wiki/1654 1654] - [http://en.wikipedia.org/wiki/Blaise_Pascal Blaise Pascal] and Pierre de Fermat create the theory of [http://en.wikipedia.org/wiki/Probability probability],
+
* [http://en.wikipedia.org/wiki/1654 1654] - 파스칼과 페르마가 확률론을 창시
 
* [http://en.wikipedia.org/wiki/1655 1655] - [http://en.wikipedia.org/wiki/John_Wallis John Wallis] writes <em style="">Arithmetica Infinitorum</em>,
 
* [http://en.wikipedia.org/wiki/1655 1655] - [http://en.wikipedia.org/wiki/John_Wallis John Wallis] writes <em style="">Arithmetica Infinitorum</em>,
 
* [http://en.wikipedia.org/wiki/1658 1658] - [http://en.wikipedia.org/wiki/Christopher_Wren Christopher Wren] shows that the length of a [http://en.wikipedia.org/wiki/Cycloid cycloid] is four times the diameter of its generating circle,
 
* [http://en.wikipedia.org/wiki/1658 1658] - [http://en.wikipedia.org/wiki/Christopher_Wren Christopher Wren] shows that the length of a [http://en.wikipedia.org/wiki/Cycloid cycloid] is four times the diameter of its generating circle,
* [http://en.wikipedia.org/wiki/1665 1665] - [http://en.wikipedia.org/wiki/Isaac_Newton Isaac Newton] works on the [http://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus fundamental theorem of calculus] and develops his version of [http://en.wikipedia.org/wiki/Infinitesimal_calculus infinitesimal calculus],
+
* [http://en.wikipedia.org/wiki/1665 1665] - 뉴턴이 [[미적분학의 기본정리]]를 연구하고 미적분학을 발전시킴
 
* [http://en.wikipedia.org/wiki/1668 1668] - [http://en.wikipedia.org/wiki/Nicholas_Mercator Nicholas Mercator] and [http://en.wikipedia.org/wiki/William_Brouncker William Brouncker] discover an [http://en.wikipedia.org/wiki/Infinite_series infinite series] for the logarithm while attempting to calculate the area under a [http://en.wikipedia.org/w/index.php?title=Hyperbolic_segment&action=edit&redlink=1 hyperbolic segment],
 
* [http://en.wikipedia.org/wiki/1668 1668] - [http://en.wikipedia.org/wiki/Nicholas_Mercator Nicholas Mercator] and [http://en.wikipedia.org/wiki/William_Brouncker William Brouncker] discover an [http://en.wikipedia.org/wiki/Infinite_series infinite series] for the logarithm while attempting to calculate the area under a [http://en.wikipedia.org/w/index.php?title=Hyperbolic_segment&action=edit&redlink=1 hyperbolic segment],
 
* [http://en.wikipedia.org/wiki/1671 1671] - [http://en.wikipedia.org/wiki/James_Gregory_%28astronomer_and_mathematician%29 James Gregory] develops a series expansion for the inverse-[http://en.wikipedia.org/wiki/Tangent_%28trigonometric_function%29 tangent] function (originally discovered by [http://en.wikipedia.org/wiki/Madhava_of_Sangamagrama Madhava])
 
* [http://en.wikipedia.org/wiki/1671 1671] - [http://en.wikipedia.org/wiki/James_Gregory_%28astronomer_and_mathematician%29 James Gregory] develops a series expansion for the inverse-[http://en.wikipedia.org/wiki/Tangent_%28trigonometric_function%29 tangent] function (originally discovered by [http://en.wikipedia.org/wiki/Madhava_of_Sangamagrama Madhava])
88번째 줄: 88번째 줄:
 
* [http://en.wikipedia.org/wiki/1850 1850] - [http://en.wikipedia.org/wiki/Victor_Alexandre_Puiseux Victor Alexandre Puiseux] distinguishes between poles and branch points and introduces the concept of [http://en.wikipedia.org/wiki/Mathematical_singularity essential singular points],
 
* [http://en.wikipedia.org/wiki/1850 1850] - [http://en.wikipedia.org/wiki/Victor_Alexandre_Puiseux Victor Alexandre Puiseux] distinguishes between poles and branch points and introduces the concept of [http://en.wikipedia.org/wiki/Mathematical_singularity essential singular points],
 
* [http://en.wikipedia.org/wiki/1850 1850] - George Gabriel Stokes rediscovers and proves [http://en.wikipedia.org/wiki/Stokes%27_theorem Stokes' theorem],
 
* [http://en.wikipedia.org/wiki/1850 1850] - George Gabriel Stokes rediscovers and proves [http://en.wikipedia.org/wiki/Stokes%27_theorem Stokes' theorem],
* [http://en.wikipedia.org/wiki/1854 1854] - [http://en.wikipedia.org/wiki/Bernhard_Riemann Bernhard Riemann] introduces [http://en.wikipedia.org/wiki/Riemannian_geometry Riemannian geometry],
+
* [http://en.wikipedia.org/wiki/1854 1854] - 리만이 [[#]]을 소개
 
* [http://en.wikipedia.org/wiki/1854 1854] - [http://en.wikipedia.org/wiki/Arthur_Cayley Arthur Cayley] shows that [http://en.wikipedia.org/wiki/Quaternion quaternions] can be used to represent rotations in four-dimensional [http://en.wikipedia.org/wiki/Space space],
 
* [http://en.wikipedia.org/wiki/1854 1854] - [http://en.wikipedia.org/wiki/Arthur_Cayley Arthur Cayley] shows that [http://en.wikipedia.org/wiki/Quaternion quaternions] can be used to represent rotations in four-dimensional [http://en.wikipedia.org/wiki/Space space],
 
* 1858 - 뫼비우스가 [[#|뫼비우스의 띠]]를 발견
 
* 1858 - 뫼비우스가 [[#|뫼비우스의 띠]]를 발견

2009년 10월 6일 (화) 14:35 판

 

17세기


18세기


19세기


20세기

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상